#### 2.532   ODE No. 532

$a y'(x)^3+b y'(x)^2+c y'(x)-d-y(x)=0$ Mathematica : cpu = 300.006 (sec), leaf count = 0 , timed out

\$Aborted

Maple : cpu = 0.293 (sec), leaf count = 874

$\left \{ x-\int ^{y \left ( x \right ) }\!-12\,{\sqrt [3]{6}a\sqrt [3]{12\,\sqrt {3}\sqrt {27\, \left ( d+{\it \_a} \right ) ^{2}{a}^{2}+18\,c \left ( \left ( d+{\it \_a} \right ) b+2/9\,{c}^{2} \right ) a+ \left ( -4\,d-4\,{\it \_a} \right ) {b}^{3}-{b}^{2}{c}^{2}}a+ \left ( 108\,d+108\,{\it \_a} \right ) {a}^{2}+36\,abc-8\,{b}^{3}} \left ( \left ( 1-i\sqrt {3} \right ) \sqrt [3]{6} \left ( 12\,\sqrt {3}\sqrt {27\, \left ( d+{\it \_a} \right ) ^{2}{a}^{2}+18\,c \left ( \left ( d+{\it \_a} \right ) b+2/9\,{c}^{2} \right ) a+ \left ( -4\,d-4\,{\it \_a} \right ) {b}^{3}-{b}^{2}{c}^{2}}a+ \left ( 108\,d+108\,{\it \_a} \right ) {a}^{2}+36\,abc-8\,{b}^{3} \right ) ^{2/3}-12\, \left ( 1+i\sqrt {3} \right ) \left ( ac-1/3\,{b}^{2} \right ) \sqrt [3]{6}+8\,b\sqrt [3]{27}\sqrt [3]{ \left ( 1/3\,\sqrt {27\, \left ( d+{\it \_a} \right ) ^{2}{a}^{2}+18\,c \left ( \left ( d+{\it \_a} \right ) b+2/9\,{c}^{2} \right ) a+ \left ( -4\,d-4\,{\it \_a} \right ) {b}^{3}-{b}^{2}{c}^{2}}a+ \left ( \left ( d+{\it \_a} \right ) {a}^{2}+1/3\,abc-{\frac {2\,{b}^{3}}{27}} \right ) \sqrt {3} \right ) \sqrt {3}} \right ) ^{-1}}{d{\it \_a}}-{\it \_C1}=0,x-\int ^{y \left ( x \right ) }\!-12\,{\sqrt [3]{6}a\sqrt [3]{12\,\sqrt {3}\sqrt {27\, \left ( d+{\it \_a} \right ) ^{2}{a}^{2}+18\,c \left ( \left ( d+{\it \_a} \right ) b+2/9\,{c}^{2} \right ) a+ \left ( -4\,d-4\,{\it \_a} \right ) {b}^{3}-{b}^{2}{c}^{2}}a+ \left ( 108\,d+108\,{\it \_a} \right ) {a}^{2}+36\,abc-8\,{b}^{3}} \left ( \left ( 1+i\sqrt {3} \right ) \sqrt [3]{6} \left ( 12\,\sqrt {3}\sqrt {27\, \left ( d+{\it \_a} \right ) ^{2}{a}^{2}+18\,c \left ( \left ( d+{\it \_a} \right ) b+2/9\,{c}^{2} \right ) a+ \left ( -4\,d-4\,{\it \_a} \right ) {b}^{3}-{b}^{2}{c}^{2}}a+ \left ( 108\,d+108\,{\it \_a} \right ) {a}^{2}+36\,abc-8\,{b}^{3} \right ) ^{2/3}+12\, \left ( ac-1/3\,{b}^{2} \right ) \left ( -1+i\sqrt {3} \right ) \sqrt [3]{6}+8\,b\sqrt [3]{27}\sqrt [3]{ \left ( 1/3\,\sqrt {27\, \left ( d+{\it \_a} \right ) ^{2}{a}^{2}+18\,c \left ( \left ( d+{\it \_a} \right ) b+2/9\,{c}^{2} \right ) a+ \left ( -4\,d-4\,{\it \_a} \right ) {b}^{3}-{b}^{2}{c}^{2}}a+ \left ( \left ( d+{\it \_a} \right ) {a}^{2}+1/3\,abc-{\frac {2\,{b}^{3}}{27}} \right ) \sqrt {3} \right ) \sqrt {3}} \right ) ^{-1}}{d{\it \_a}}-{\it \_C1}=0,x-\int ^{y \left ( x \right ) }\!6\,{\sqrt [3]{6}a\sqrt [3]{12\,\sqrt {3}\sqrt {27\, \left ( d+{\it \_a} \right ) ^{2}{a}^{2}+18\,c \left ( \left ( d+{\it \_a} \right ) b+2/9\,{c}^{2} \right ) a+ \left ( -4\,d-4\,{\it \_a} \right ) {b}^{3}-{b}^{2}{c}^{2}}a+ \left ( 108\,d+108\,{\it \_a} \right ) {a}^{2}+36\,abc-8\,{b}^{3}} \left ( \sqrt [3]{6} \left ( 12\,\sqrt {3}\sqrt {27\, \left ( d+{\it \_a} \right ) ^{2}{a}^{2}+18\,c \left ( \left ( d+{\it \_a} \right ) b+2/9\,{c}^{2} \right ) a+ \left ( -4\,d-4\,{\it \_a} \right ) {b}^{3}-{b}^{2}{c}^{2}}a+ \left ( 108\,d+108\,{\it \_a} \right ) {a}^{2}+36\,abc-8\,{b}^{3} \right ) ^{2/3}-12\,\sqrt [3]{6}ac+4\,\sqrt [3]{6}{b}^{2}-4\,b\sqrt [3]{27}\sqrt [3]{ \left ( 1/3\,\sqrt {27\, \left ( d+{\it \_a} \right ) ^{2}{a}^{2}+18\,c \left ( \left ( d+{\it \_a} \right ) b+2/9\,{c}^{2} \right ) a+ \left ( -4\,d-4\,{\it \_a} \right ) {b}^{3}-{b}^{2}{c}^{2}}a+ \left ( \left ( d+{\it \_a} \right ) {a}^{2}+1/3\,abc-{\frac {2\,{b}^{3}}{27}} \right ) \sqrt {3} \right ) \sqrt {3}} \right ) ^{-1}}{d{\it \_a}}-{\it \_C1}=0 \right \}$