#### 2.524   ODE No. 524

$y'(x)^3-2 y(x) y'(x)+y(x)^2=0$ Mathematica : cpu = 300.003 (sec), leaf count = 0 , timed out

\$Aborted

Maple : cpu = 0.095 (sec), leaf count = 243

$\left \{ x-\int ^{y \left ( x \right ) }\!12\,{\frac {\sqrt [3]{-108\,{{\it \_a}}^{2}+12\,\sqrt {81\,{{\it \_a}}^{4}-96\,{{\it \_a}}^{3}}}}{ \left ( -1+i\sqrt {3} \right ) \left ( -108\,{{\it \_a}}^{2}+12\,\sqrt {81\,{{\it \_a}}^{4}-96\,{{\it \_a}}^{3}} \right ) ^{2/3}+12\,{\it \_a}\, \left ( -1+i\sqrt {3} \right ) ^{2}}}{d{\it \_a}}-{\it \_C1}=0,x-\int ^{y \left ( x \right ) }\!6\,{\frac {\sqrt [3]{-108\,{{\it \_a}}^{2}+12\,\sqrt {81\,{{\it \_a}}^{4}-96\,{{\it \_a}}^{3}}}}{ \left ( -108\,{{\it \_a}}^{2}+12\,\sqrt {81\,{{\it \_a}}^{4}-96\,{{\it \_a}}^{3}} \right ) ^{2/3}+24\,{\it \_a}}}{d{\it \_a}}-{\it \_C1}=0,x-\int ^{y \left ( x \right ) }\!12\,{\frac {\sqrt [3]{-108\,{{\it \_a}}^{2}+12\,\sqrt {81\,{{\it \_a}}^{4}-96\,{{\it \_a}}^{3}}}}{ \left ( 1+i\sqrt {3} \right ) \left ( 12\,i{\it \_a}\,\sqrt {3}- \left ( -108\,{{\it \_a}}^{2}+12\,\sqrt {81\,{{\it \_a}}^{4}-96\,{{\it \_a}}^{3}} \right ) ^{2/3}+12\,{\it \_a} \right ) }}{d{\it \_a}}-{\it \_C1}=0 \right \}$