3 Special ode’s and their solutions

3.1 Airy \(y^{\prime \prime }+axy=0\)
3.2 Chebyshev \(\left ( 1-x^{2}\right ) y^{\prime \prime }-xy^{\prime }+n^{2}y=0\)
3.3 Hermite \(y^{\prime \prime }-2xy^{\prime }+2ny=0\)
3.4 Legendre \(\left ( 1-x^{2}\right ) y^{\prime \prime }-2xy^{\prime }+n\left ( n+1\right ) y=0\)
3.5 Bessel \(x^{2}y^{\prime \prime }+xy^{\prime }+\left ( x^{2}-n^{2}\right ) y=0\)
3.6 Reduced Riccati \(y^{\prime }=ax^{n}+by^{2}\)
3.7 Gauss Hypergeometric ode \(x\left ( 1-x\right ) y^{\prime \prime }+\left ( c-\left ( a+b+1\right ) x\right ) y^{\prime }-aby=0\)

These are ode’s whose solution is in terms of special functions. Will update as I find more. Most of the special functions come up from working out the solution in series of second order ode which has regular singular point at expansion point. These are the more interesting odes which will generate these special functions.

3.1 Airy  \(y^{\prime \prime }+axy=0\)

solution is

\[ y\left ( x\right ) =c_{1}\operatorname {AiryAi}\left ( -a^{\frac {1}{3}}x\right ) +c_{2}\operatorname {AiryBi}\left ( -a^{\frac {1}{3}}x\right ) \]

3.2 Chebyshev \(\left ( 1-x^{2}\right ) y^{\prime \prime }-xy^{\prime }+n^{2}y=0\)

For

\[ \left ( 1-x^{2}\right ) y^{\prime \prime }-xy^{\prime }+n^{2}y=0 \]

Singular points at \(x=1,-1\) and \(\infty \). Solution valid for \(\left \vert x\right \vert <1\). Maple gives solution

\[ y\left ( x\right ) =c_{1}\frac {1}{\left ( x+\sqrt {x^{2}-1}\right ) ^{n}}+c_{2}\left ( x+\sqrt {x^{2}-1}\right ) ^{n}\]

For

\[ \left ( 1-x^{2}\right ) y^{\prime \prime }-axy^{\prime }+n^{2}y=0 \]

Maple gives solution

\begin{multline*} y\left ( x\right ) =c_{1}\left ( x^{2}-1\right ) ^{\frac {1}{2}-\frac {a}{4}}\operatorname {LegendreP}\left ( \frac {\sqrt {a^{2}+4n^{2}-2a+1}}{2}-\frac {1}{2},-1+\frac {a}{2},x\right ) \\ +c_{2}\left ( x^{2}-1\right ) ^{\frac {1}{2}-\frac {a}{4}}\operatorname {LegendreQ}\left ( \frac {\sqrt {a^{2}+4n^{2}-2a+1}}{2}-\frac {1}{2},-1+\frac {a}{2},x\right ) \end{multline*}

If \(n\) positive integer, then solution in series gives polynomial solution of degree \(n\). Called Chebyshev polynomials.

3.3 Hermite \(y^{\prime \prime }-2xy^{\prime }+2ny=0\)

Converges for all \(x\). If \(n\) is positive integer, one series terminates. Series solution in terms of Hermite polynomials.

Maple gives solution

\[ y\left ( x\right ) =c_{1}x\operatorname {KummerM}\left ( \frac {1}{2}-\frac {n}{2},\frac {3}{2},x^{2}\right ) +c_{2}x\operatorname {KummerU}\left ( \frac {1}{2}-\frac {n}{2},\frac {3}{2},x^{2}\right ) \]

3.4 Legendre \(\left ( 1-x^{2}\right ) y^{\prime \prime }-2xy^{\prime }+n\left ( n+1\right ) y=0\)

Series solution in terms of Legendre functions. When \(n\) is positive integer, one series terminates (i.e. becomes polynomial).

Maple gives solution

\[ y\left ( x\right ) =c_{1}\operatorname {LegendreP}\left ( n,x\right ) +c_{2}\operatorname {LegendreQ}\left ( n,x\right ) \]

If the ode is given in form

\[ \sin \left ( \theta \right ) P^{\prime \prime }\left ( \theta \right ) +\cos \left ( \theta \right ) P^{\prime }\left ( \theta \right ) +n\sin \left ( \theta \right ) P\left ( \theta \right ) =0 \]

Then using \(x=\cos \theta \) transforms it to the earlier more familar form. Maple gives this as solution

\[ P\left ( \theta \right ) =c_{1}\operatorname {LegendreP}\left ( \frac {\sqrt {4n+1}}{2}-\frac {1}{2},\cos \theta \right ) +c_{2}\operatorname {LegendreQ}\left ( \frac {\sqrt {4n+1}}{2}-\frac {1}{2},\cos \theta \right ) \]

3.5 Bessel \(x^{2}y^{\prime \prime }+xy^{\prime }+\left ( x^{2}-n^{2}\right ) y=0\)

\(x=0\,\) is regular singular point. Solution in terms of Bessel functions

\[ y\left ( x\right ) =c_{1}\operatorname {BesselJ}\left ( n,x\right ) +c_{2}\operatorname {BesselY}\left ( n,x\right ) \]

3.6 Reduced Riccati \(y^{\prime }=ax^{n}+by^{2}\)

For the special case of \(n=-2\) the solution is

\[ y\left ( x\right ) =\frac {\lambda }{x}-\frac {x^{2b\lambda }}{\frac {bx}{2b\lambda +1}x^{2b\lambda }+c_{1}}\]

Where in the above \(\lambda \) is a root of \(b\lambda ^{2}+\lambda +a=0\).

For \(n\neq -2\)

\begin{align*} w & =\sqrt {x}\left \{ \begin {array} [c]{cc}c_{1}\operatorname {BesselJ}\left ( \frac {1}{2k},\frac {1}{k}\sqrt {ab}x^{k}\right ) +c_{2}\operatorname {BesselY}\left ( \frac {1}{2k},\frac {1}{k}\sqrt {ab}x^{k}\right ) & ab>0\\ c_{1}\operatorname {BesselI}\left ( \frac {1}{2k},\frac {1}{k}\sqrt {-ab}x^{k}\right ) +c_{2}\operatorname {BesselK}\left ( \frac {1}{2k},\frac {1}{k}\sqrt {-ab}x^{k}\right ) & ab<0 \end {array} \right . \\ y & =-\frac {1}{b}\frac {w^{\prime }}{w}\\ k & =1+\frac {n}{2}\end{align*}

3.7 Gauss Hypergeometric ode \(x\left ( 1-x\right ) y^{\prime \prime }+\left ( c-\left ( a+b+1\right ) x\right ) y^{\prime }-aby=0\)

Solution is for \(\left \vert x\right \vert <1\) is in terms of hypergeom function. Has 3 regular singular points, \(x=0,x=1,x=\infty \).

Maple gives this solution

\[ y\left ( x\right ) =c_{1}\operatorname {hypergeom}\left ( \left [ a,b\right ] ,\left [ c\right ] ,x\right ) +c_{2}x^{1-c}\operatorname {hypergeom}\left ( \left [ 1+a-c,1+b-c\right ] ,\left [ 2-c\right ] ,x\right ) \]

And Mathematica gives

\[ y\left ( x\right ) =c_{1}\operatorname {HypergeometricF1}\left ( a,b,c,x\right ) +\left ( -1\right ) ^{1-c}x^{1-c}c_{2}\operatorname {HypergeometricF1}\left ( 1+a-c,1+b-c,2-c,x\right ) \]