18 Complex functions notes

18.1 Find \(b_{n}\) coefficients in the Laurent series expansion

\(\blacksquare \) Complex identities

\begin{align*} \left \vert z\right \vert ^{2} & =z\bar {z}\\ \overline {\left ( \bar {z}\right ) } & =z\\ \overline {\left ( z_{1}+z_{2}\right ) } & =\bar {z}_{1}+\bar {z}_{2}\\ \left \vert \bar {z}\right \vert & =\left \vert z\right \vert \\ \left \vert z_{1}z_{2}\right \vert & =\left \vert z_{1}\right \vert \left \vert z_{2}\right \vert \\ \operatorname {Re}\left ( z\right ) & =\frac {z+\bar {z}}{2}\\ \operatorname {Im}\left ( z\right ) & =\frac {z+\bar {z}}{2i}\\ \arg \left ( z_{1}z_{2}\right ) & =\arg \left ( z_{1}\right ) +\arg \left ( z_{2}\right ) \end{align*}

\(\blacksquare \) A complex function \(f\left ( z\right ) \) is analytic in a region \(D\) if it is defined and differentiable at all points in \(D\). One way to check for analyticity is to use the Cauchy Riemann (CR) equations (this is a necessary condition but not sufficient). If \(f\left ( z\right ) \) satisfies CR everywhere in that region then it is analytic. Let \(f\left ( z\right ) =u\left ( x,y\right ) +iv\left ( x,y\right ) \), then these two equations in Cartesian coordinates are

\begin{align*} \frac {\partial u}{\partial x} & =\frac {\partial v}{\partial y}\\ -\frac {\partial u}{\partial y} & =\frac {\partial v}{\partial x}\end{align*}

Sometimes it is easier to use the polar form of these. Let \(f\left ( z\right ) =r\cos \theta +i\sin \theta \), then the equations become

\begin{align*} \frac {\partial u}{\partial r} & =\frac {1}{r}\frac {\partial v}{\partial \theta }\\ -\frac {1}{r}\frac {\partial u}{\partial \theta } & =\frac {\partial v}{\partial r}\end{align*}

To remember them, think of the \(r\) as the \(x\) and \(\theta \) as the \(y\).

Let us apply these on \(\sqrt {z}\) to see how it works. Since \(z=re^{i\theta +2n\pi }\) then \(f\left ( z\right ) =\) \(\sqrt {r}e^{i\frac {\theta }{2}+n\pi }\).This is multi-valued function. One value for \(n=0\) and another for \(n=1\). The first step is to make it single valued. Choosing \(n=0\) gives the principal value. Then \(f\left ( z\right ) =\sqrt {r}e^{i\frac {\theta }{2}}\). Now we find the branch points. \(z=0\) is a branch point. We can pick \(-\pi <\theta <\pi \) and pick the negative real axis as the branch cut (the other branch point being \(-\infty \)). This is one choice.

We could have picked \(0<\theta <2\pi \) and had the positive \(x\) axis as the branch cut, where now the second branch point is \(+\infty \) but in both cases, origin is still part of the branch cut. Let us stick with \(-\pi <\theta <\pi \).

Given all of this, now\(\sqrt {z}=\sqrt {r}e^{i\frac {\theta }{2}}=\sqrt {r}\left ( \cos \left ( \frac {\theta }{2}\right ) +i\sin \left ( \frac {\theta }{2}\right ) \right ) \), hence \(u=\sqrt {r}\cos \left ( \frac {\theta }{2}\right ) \) and \(v=\sqrt {r}\sin \left ( \frac {\theta }{2}\right ) \). Therefore \(\frac {\partial u}{\partial r}=\frac {1}{2}\frac {1}{\sqrt {r}}\cos \left ( \frac {\theta }{2}\right ) ,\) and \(\frac {\partial v}{\partial \theta }=\frac {1}{2}\sqrt {r}\cos \left ( \frac {\theta }{2}\right ) \) and \(\frac {\partial u}{\partial \theta }=-\frac {1}{2}\sqrt {r}\sin \left ( \frac {\theta }{2}\right ) \) and \(\frac {\partial v}{\partial r}=\frac {1}{2}\frac {1}{\sqrt {r}}\sin \left ( \frac {\theta }{2}\right ) \). Applying Cauchy-Riemann above gives

\begin{align*} \frac {1}{2}\frac {1}{\sqrt {r}}\cos \left ( \frac {\theta }{2}\right ) & =\frac {1}{r}\frac {1}{2}\sqrt {r}\cos \left ( \frac {\theta }{2}\right ) \\ \frac {1}{2}\frac {1}{\sqrt {r}}\cos \left ( \frac {\theta }{2}\right ) & =\frac {1}{2}\frac {1}{\sqrt {r}}\cos \left ( \frac {\theta }{2}\right ) \end{align*}

Satisfied. and for the second equation

\begin{align*} -\frac {1}{r}\left ( -\frac {1}{2}\sqrt {r}\sin \left ( \frac {\theta }{2}\right ) \right ) & =\frac {1}{2}\frac {1}{\sqrt {r}}\sin \left ( \frac {\theta }{2}\right ) \\ \frac {1}{2}\frac {1}{\sqrt {r}}\sin \left ( \frac {\theta }{2}\right ) & =\frac {1}{2}\frac {1}{\sqrt {r}}\sin \left ( \frac {\theta }{2}\right ) \end{align*}

so \(\sqrt {z}\) is analytic in the region \(-\pi <\theta <\pi \), and not including branch points and branch cut.

\(\blacksquare \) We can’t just say \(f\left ( z\right ) \) is Analytic and stop. Have to say \(f\left ( z\right ) \) is analytic in a region or at a point. When we say \(f\left ( z\right ) \) analytic at a point, we mean analytic in small region around the point.

If \(f\left ( z\right ) \) is defined only at an isolated point \(z_{0}\) and not defined anywhere around it, then the function can not be analytic at \(z_{0}\) since it is not differentiable at \(z_{0}\). Also \(f\left ( z\right ) \) is analytic at a point \(z_{0}\) if the power series for \(f\left ( z\right ) \) expanded around \(z_{0}\) converges to \(f\left ( z\right ) \) evaluated at \(z_{0}\). An analytic complex function mean it is infinitely many times differentiable in the region, which means the limit exist \(\lim _{\Delta z\rightarrow 0}\frac {f\left ( z+\Delta z\right ) -f\left ( z\right ) }{\Delta z}\) and does not depend on direction.

\(\blacksquare \) Before applying the Cauchy Riemann equations, make sure the complex function is first made to be single valued.

\(\blacksquare \) Remember that Cauchy Riemann equations as necessary but not sufficient condition for function to be analytic. The extra condition needed is that all the partial derivatives are continuous. Need to find example where CR is satisfied but not the continuity on the partial derivatives. Most of the HW problems just needs the CR but good to keep an eye on this other condition.

\(\blacksquare \) Cauchy-Goursat: If \(f\left ( z\right ) \) is analytic on and inside closed contour \(C\) then \({\displaystyle \oint \limits _{C}} f\left ( z\right ) dz=0\). But remember that if \({\displaystyle \oint \limits _{C}} f\left ( z\right ) dz=0\) then this does not necessarily imply \(f\left ( z\right ) \) is analytic on and inside \(C\). So this is an IF and not an IFF relation. For example \({\displaystyle \oint \limits _{C}} \frac {1}{z^{2}}dz=0\) around unit circle centered at origin, but clearly \(\frac {1}{z^{2}}\) is not analytic everywhere inside \(C\), since it has a singularity at \(z=0\).

proof of Cauchy-Goursat: The proof uses two main ideas. It uses the Cauchy-Riemann equations and also uses Green theorem.  Green’s Theorem says

\begin{equation} \int _{C}Pdx+Qdy=\int _{D}\left ( \frac {\partial Q}{\partial x}-\frac {\partial P}{\partial y}\right ) dA \tag {1}\end{equation}

So Green’s Theorem transforms integration on the boundary \(C\) of region \(D\) by integration over the area inside the boundary \(C\).  Let \(f\left ( z\right ) =u+iv\). And since \(z=x+iy\) then \(dz=dx+idy\). Therefore

\begin{align}{\displaystyle \oint \limits _{C}} f\left ( z\right ) dz & ={\displaystyle \oint \limits _{C}} \left ( u+iv\right ) \left ( dx+idy\right ) \nonumber \\ & ={\displaystyle \oint \limits _{C}} udx+uidy+ivdx-vdy\nonumber \\ & ={\displaystyle \oint \limits _{C}} \left ( udx-vdy\right ) +i{\displaystyle \oint \limits _{C}} vdx+udy \tag {2}\end{align}

We now apply  (1) to each of the two integrals in (3). Hence the first integral in (2) becomes

\[{\displaystyle \oint \limits _{C}} \left ( udx-vdy\right ) =\int _{D}\left ( -\frac {\partial v}{\partial x}-\frac {\partial u}{\partial y}\right ) dA \]

But from CR, we know that \(-\frac {\partial u}{\partial y}=\frac {\partial v}{\partial x}\), hence the above is zero. And the second integral in (2) becomes

\[{\displaystyle \oint \limits _{C}} vdx+udy=\int _{D}\left ( \frac {\partial u}{\partial x}-\frac {\partial v}{\partial y}\right ) dA \]

But from CR, we know that \(\frac {\partial u}{\partial x}=\frac {\partial v}{\partial y}\), hence the above is zero. Therefore the whole integral in (2) is zero. Therefore \({\displaystyle \oint \limits _{C}} f\left ( z\right ) dz=0\). QED.

\(\blacksquare \) Cauchy residue: If \(f\left ( z\right ) \) is analytic on and inside closed contour \(C\) except at some isolated points \(z_{1},z_{2},\cdots ,z_{N}\) then \({\displaystyle \oint \limits _{C}} f\left ( z\right ) dz=2\pi i\sum _{j=1}^{N}\operatorname {Res}\left ( f\left ( z\right ) \right ) _{z=z_{j}}\). The term \(\operatorname {Res}\left ( f\left ( z\right ) \right ) _{z=z_{j}}\) is the residue of \(f\left ( z\right ) \) at point \(z_{j}\). Use Laurent expansion of \(f\left ( z\right ) \) to find residues. See above on methods how to find Laurent series.

\(\blacksquare \) Maximum modulus principle: If \(f\left ( z\right ) \) is analytic in some region \(D\) and is not constant inside \(D\), then its maximum value must be on the boundary. Also its minimum on the boundary, as long as \(f\left ( z\right ) \neq 0\) anywhere inside \(D\). In the other hand, if \(f\left ( z\right ) \) happened to have a maximum at some point \(z_{0}\) somewhere inside \(D\), then this implies that \(f\left ( z\right ) \) is constant everywhere and will have the value \(f\left ( z_{0}\right ) \) everywhere. What all this really mean, is that if \(f\left ( z\right ) \) is analytic and not constant in \(D\), then its maximum is on the boundary and not inside.

There is a complicated proof of this. See my notes for Physics 501. Hopefully this will not come up in the exam since I did not study the proof.

\(\blacksquare \) These definitions from book of Joseph Bak  

  1. \(f\) is analytic at \(z\) if \(f\) is differentiable in a neighborhood of \(z\). Similarly \(f\) is analytic on set \(S\) if \(f\) is differentiable at all points in some open set containing \(S\).
  2. \(f\left ( z\right ) \) is analytic on open set \(U\) is \(f\left ( z\right ) \) if differentiable at each point of \(U\) and \(f^{\prime }\left ( z\right ) \) is continuous on \(U\).

\(\blacksquare \) Some important formulas.

  1. If \(f\left ( z\right ) \) is analytic on and inside \(C\) then

    \[{\displaystyle \oint \limits _{C}} f\left ( z\right ) dz=0 \]
  2. If \(f\left ( z\right ) \) is analytic on and inside \(C\) then and \(z_{0}\) is a point in \(C\) then

    \begin{align*} 2\pi if\left ( z_{0}\right ) & ={\displaystyle \oint \limits _{C}} \frac {f\left ( z\right ) }{z-z_{0}}dz\\ 2\pi if^{\prime }\left ( z_{0}\right ) & ={\displaystyle \oint \limits _{C}} \frac {f\left ( z\right ) }{\left ( z-z_{0}\right ) ^{2}}dz\\ \frac {2\pi i}{2!}f^{\prime \prime }\left ( z_{0}\right ) & ={\displaystyle \oint \limits _{C}} \frac {f\left ( z\right ) }{\left ( z-z_{0}\right ) ^{3}}dz\\ & \vdots \\ \frac {2\pi i}{n!}f^{\left ( n\right ) }\left ( z_{0}\right ) & ={\displaystyle \oint \limits _{C}} \frac {f\left ( z\right ) }{\left ( z-z_{0}\right ) ^{n+1}}dz \end{align*}
  3. From the above, we find, where here \(f\left ( z\right ) =1\)

    \[{\displaystyle \oint \limits _{C}} \frac {1}{\left ( z-z_{0}\right ) ^{n+1}}dz=\left \{ \begin {array} [c]{ccc}2\pi i & & n=0\\ 0 & & n=1,2,\cdots \end {array} \right . \]

18.1 Find \(b_{n}\) coefficients in the Laurent series expansion

On Finding coefficient of the principle part of the Laurent series expansion around \(z_{0}\). Let

\begin{align} f\left ( z\right ) & =\sum _{n=0}^{\infty }c_{n}\left ( z-z_{0}\right ) ^{n}+\sum _{n=1}^{N}\frac {b_{n}}{\left ( z-z_{0}\right ) ^{n}}\tag {1}\\ & =\sum _{n=0}^{\infty }c_{n}\left ( z-z_{0}\right ) ^{n}+\frac {b_{1}}{\left ( z-z_{0}\right ) }+\frac {b_{2}}{\left ( z-z_{0}\right ) ^{2}}+\frac {b_{3}}{\left ( z-z_{0}\right ) ^{3}}+\cdots +\frac {b_{N}}{\left ( z-z_{0}\right ) ^{N}}\nonumber \end{align}

The goal is to determine all the coefficients \(b_{1},b_{2},\cdots ,b_{N}\) in Laurent series expansion. This assumes the largest order of the pole is finite. To find \(b_{1}\), we multiply both side of the above by \(\left ( z-z_{0}\right ) ^{N}\) which gives

\begin{equation} \left ( z-z_{0}\right ) ^{N}f\left ( z\right ) =\sum _{n=0}^{\infty }c_{n}\left ( z-z_{0}\right ) ^{n+N}+b_{1}\left ( z-z_{0}\right ) ^{N-1}+b_{2}\left ( z-z_{0}\right ) ^{N-2}+b_{3}\left ( z-z_{0}\right ) ^{N-3}+\cdots +b_{N} \tag {2}\end{equation}

Differentiating both sides \(N-1\) times w.r.t. \(z\) gives

\[ \frac {d^{N-1}}{dz^{\left ( N-1\right ) }}\left ( \left ( z-z_{0}\right ) ^{N}f\left ( z\right ) \right ) =\sum _{n=0}^{\infty }\frac {d^{N-1}}{dz^{\left ( N-1\right ) }}\left ( c_{n}\left ( z-z_{0}\right ) ^{n+N}\right ) +b_{1}\left ( N-1\right ) ! \]

Evaluating at \(x=x_{0}\) the above gives

\[ b_{1}=\frac {\lim _{z\rightarrow z_{0}}\frac {d^{N-1}}{dz^{\left ( N-1\right ) }}\left ( \left ( z-z_{0}\right ) ^{N}f\left ( z\right ) \right ) }{\left ( N-1\right ) !}\]

To find \(b_{2}\) we differentiate both sides of (2) \(N-2\) times which gives

\[ \frac {d^{N-2}}{dz^{\left ( N-2\right ) }}\left ( \left ( z-z_{0}\right ) ^{N}f\left ( z\right ) \right ) =\sum _{n=0}^{\infty }\frac {d^{N-2}}{dz^{\left ( N-2\right ) }}\left ( c_{n}\left ( z-z_{0}\right ) ^{n+N}\right ) +b_{1}\left ( N-1\right ) !\left ( x-x_{0}\right ) +b_{2}\left ( N-2\right ) ! \]

Hence

\[ b_{2}=\frac {\lim _{z\rightarrow z_{0}}\frac {d^{N-2}}{dz^{\left ( N-2\right ) }}\left ( \left ( z-z_{0}\right ) ^{N}f\left ( z\right ) \right ) }{\left ( N-2\right ) !}\]

We keep doing the above to find \(b_{3},b_{4},\cdots ,b_{N}\). Therefore the general formula is

\begin{equation} b_{n}=\frac {\lim _{z\rightarrow z_{0}}\frac {d^{N-n}}{dz^{\left ( N-n\right ) }}\left ( \left ( z-z_{0}\right ) ^{N}f\left ( z\right ) \right ) }{\left ( N-n\right ) !} \tag {3A}\end{equation}

And for the special case of the last term \(b_{N}\) the above simplifies to

\begin{equation} b_{k}=\frac {\lim _{z\rightarrow z_{0}}\left ( z-z_{0}\right ) ^{N}f\left ( z\right ) }{\left ( N-k\right ) !} \tag {3B}\end{equation}

Where in (3) \(n\) is the coefficient \(b_{n}\) needed to be evaluated and \(N\) is the pole order and \(z_{0}\) is the expansion point. The special value \(b_{1}\) is called the residue of \(f\left ( z\right ) \) at \(z_{0}\).