1 How to use LambertW to solve equation?
LambertW, will be now called \(W\left ( z\right ) \), it also called the product log. The following three definitions will be used as is, in solving few problems
- \(W\left ( ze^{z}\right ) =z\)
- \(\ln \left ( W\left ( z\right ) \right ) =\ln \left ( z\right ) -W\left ( z\right ) \)
- if \(ye^{Ay}=z\) then \(y=\frac {W\left ( Az\right ) }{A}\)
Let see how to use the above to solve few equations.
1.1 Example 1 \(ye^{y}=x\)
Solve
\[ ye^{y}=x \]
For \(y\). Applying \(W\) function on both sides gives
\[ W\left ( ye^{y}\right ) =W\left ( x\right ) \]
But \(W\left ( ye^{y}\right ) =y\). Hence the above becomes
\[ y=W\left ( x\right ) \]
1.2 Example 2 \(y+e^{y}=x\)
Solve
\[ y+e^{y}=x \]
For \(y\). Taking the exponential of both sides gives
\begin{align*} e^{\left ( y+e^{y}\right ) } & =e^{x}\\ e^{y}e^{e^{y}} & =e^{x}\end{align*}
Let \(e^{y}=\alpha \) then the above becomes
\[ \alpha e^{\alpha }=e^{x}\]
Applying \(W\) on both sides gives
\[ W\left ( \alpha e^{\alpha }\right ) =W\left ( e^{x}\right ) \]
But \(W\left ( \alpha e^{\alpha }\right ) =\alpha \). Hence the above becomes
\[ \alpha =W\left ( e^{x}\right ) \]
but \(e^{y}=\alpha \), then
\[ e^{y}=W\left ( e^{x}\right ) \]
Taking log gives
\[ y=\ln \left ( W\left ( e^{x}\right ) \right ) \]
Using the relation \(\ln \left ( W\left ( z\right ) \right ) =\ln \left ( z\right ) -W\left ( z\right ) \) in the above gives
\begin{align*} y & =\ln \left ( e^{x}\right ) -W\left ( e^{x}\right ) \\ & =x-W\left ( e^{x}\right ) \end{align*}
Which is the solution to \(y+e^{y}=x\).
1.3 Example 3 \(y+e^{y+c}=x\)
Solve
\[ y+e^{y+c}=x \]
Taking the exponential of both sides gives
\begin{align*} e^{\left ( y+e^{y+c}\right ) } & =e^{x}\\ e^{y}e^{e^{y+c}} & =e^{x}\end{align*}
Let \(e^{y}=\alpha \) and \(e^{c}=\beta \) then the above becomes
\[ \alpha e^{\alpha \beta }=e^{x}\]
Using the third relation given above by applying \(W\) on both sides gives
\[ \alpha =\frac {W\left ( \beta e^{x}\right ) }{\beta }\]
But \(\alpha =e^{y}\), \(\beta =e^{c}\) then the above becomes
\begin{align*} e^{y} & =\frac {W\left ( e^{c}e^{x}\right ) }{e^{c}}\\ & =W\left ( e^{c}e^{x}\right ) e^{-c}\end{align*}
Taking log gives
\begin{align*} y & =\ln \left ( W\left ( e^{c}e^{x}\right ) e^{-c}\right ) \\ y & =\ln W\left ( e^{c}e^{x}\right ) +\ln e^{-c}\\ & =\ln \left ( W\left ( e^{x+c}\right ) \right ) -c \end{align*}
But \(\ln \left ( W\left ( z\right ) \right ) =\ln \left ( z\right ) -W\left ( z\right ) \). Hence the above becomes
\begin{align*} y & =\ln e^{c+x}-W\left ( e^{x+c}\right ) -c\\ & =\left ( c+x\right ) -W\left ( e^{x+c}\right ) -c\\ & =x-W\left ( e^{x+c}\right ) \end{align*}
1.4 Example 4 \(e^{y}-ye^{y}=x\)
Solve
\[ e^{y}-ye^{y}=x \]
For \(y\).
\[ e^{y}\left ( 1-y\right ) =x \]
Let \(1-y=u\) then \(y=1-u\) and the above becomes
\begin{align*} e^{1-u}\left ( u\right ) & =x\\ eue^{-u} & =x\\ ue^{-u} & =\frac {x}{e}\end{align*}
Let \(z=-u\)
\begin{align*} -ze^{z} & =\frac {x}{e}\\ ze^{z} & =-\frac {x}{e}\end{align*}
Applying \(W\) gives
\begin{align*} W\left ( ze^{z}\right ) & =W\left ( -\frac {x}{e}\right ) \\ z & =W\left ( -\frac {x}{e}\right ) \\ -u & =W\left ( -\frac {x}{e}\right ) \\ y-1 & =W\left ( -\frac {x}{e}\right ) \\ y & =W\left ( -\frac {x}{e}\right ) +1 \end{align*}
1.5 Example 5 \(x^{x}=5\)
Solve
\[ x^{x}=5 \]
Hence
\[ x\ln x=\ln 5 \]
But \(x=e^{\ln x}\). The above becomes
\[ \ln xe^{\ln x}=\ln 5 \]
Let \(\alpha =\ln x\)
\[ \alpha e^{\alpha }=\ln 5 \]
Applying \(W\) on both sides
\begin{align*} W\left ( \alpha e^{\alpha }\right ) & =W\left ( \ln 5\right ) \\ \alpha & =W\left ( \ln 5\right ) \\ \ln x & =W\left ( \ln 5\right ) \end{align*}
Taking exponentials gives the final answer
\[ x=e^{W\left ( \ln 5\right ) }\]