The solution of the following Integral
> assume(a>0); > w:=Int(x*exp(-a/x)/(1+x^(3/2))^2,x=0..infinity); infinity a~ / x exp(- ----) | x w := | ------------- dx | 3/2 2 | (1 + x ) / 0 > w1:=value(w); / | 3 3 1/2 | Pi hypergeom([5/6], [-1/6, 1/3, 2/3], - 1/27 a~ ) w1 := - 1/9 a~ 3 |4/3 -------------------------------------------------- | a~ | \ 3 3 2 1/2 - 4/3 Pi hypergeom([7/6], [1/6, 2/3, 4/3], - 1/27 a~ ) - 3/2 Pi a~ 3 /infinity | ----- | \ (2 _k1) | ) (-1) (Psi(3/2 + _k1) - Psi(1 + _k1) - Psi(5/3 + _k1) | / | ----- \_k1 = 0 + Pi cot(-Pi _k1 + 1/3 Pi) - Psi(4/3 + _k1) - Pi tan(-Pi _k1 + 1/6 Pi) (3 _k1) - Psi(1/2 + _k1) + Pi tan(Pi _k1) + 3 ln(a~) - 3 ln(3)) a~ (-3 _k1) (3 _k1) 3 sec(-Pi _k1 + 1/6 Pi) csc(-Pi _k1 + 1/3 Pi) sec(Pi _k1) 3 \ | | (1/2 + _k1)/GAMMA(3 + 3 _k1)| | | / \ | 32 5/2 5/2 1/2 3 | / - -- Pi a~ 3 hypergeom([2], [3/2, 11/6, 13/6], - 1/27 a~ )| / 35 | / | / 2 Pi
( which Mma is unable to solve at all ! )
> evalf(subs(a=1,w1)); -.4502788024 > evalf(subs(a=1,w)); .4502788021
seems to have a bug in the sign.
It is corrected with Maple 7. (U. Klein)