[
next
] [
prev
] [
prev-tail
] [
tail
] [
up
]
1.3
Examples
1.3.1
Example 1
\(y=xp+\frac {1}{p}\)
(Clairaut)
1.3.2
Example 2
\(y=xp-p^{2}\)
(Clairaut)
1.3.3
Example 3
\(y=xp-\frac {1}{4}p^{2}\)
(Clairaut)
1.3.4
Example 4
\(y=xp^{2}\)
(d’Alembert)
1.3.5
Example 5
\(y=x+p^{2}\)
(d’Alembert)
1.3.6
Example 6
\(y=-x+\left ( p^{2}-1\right ) \)
(d’Alembert)
1.3.7
Example 7
\(y=\frac {1}{p}x+p\)
(d’Alembert)
1.3.8
Example 8
\(y=xp^{2}+p^{2}\)
(d’Alembert)
1.3.9
Example 9
\(y=\frac {x}{a}p+\frac {b}{a}\frac {1}{p}\)
(d’Alembert)
1.3.10
Example 10
\(y=x\left ( p+a\sqrt {1+p^{2}}\right ) \)
(d’Alembert)
1.3.11
Example 11
\(y=x+p^{2}\left ( 1-\frac {2}{3}p\right ) \)
(d’Alembert)
1.3.12
Example 12
\(y=2x-\frac {1}{2}\ln \left ( \frac {p^{2}}{p-1}\right ) \)
(d’Alembert)
1.3.13
Example 13
\(y=xp-\frac {p^{2}}{p+1}\)
(Clairaut)
1.3.14
Example 14
\(y=xp+\frac {1}{1+p}\)
(Clairaut)
1.3.15
Example 15
\(xyy^{\prime }=y^{2}+x\sqrt {4x^{2}+y^{2}}\)
(d’Alembert)
1.3.16
Example 16
\(y=\ln \left ( \cos p\right ) +p\tan p\)
(d’Alembert)
1.3.17
Example 17
\(y=x\left ( \frac {1}{2}p+\frac {2}{p}\right ) \)
(d’Alembert)
1.3.18
Example 18
\(y=\frac {x}{p}-ap\)
(d’Alembert)
1.3.19
Example 19
\(y=xF\left ( p\right ) +G\left ( p\right ) \)
(d’Alembert)
1.3.20
Example 20
\(y=xp+\left ( 1+2p+p^{2}\right ) \)
(Clairaut)
1.3.21
Example 21
\(y=-x\left ( \frac {2+\sqrt {1+p^{2}}}{2p}\right ) \)
(d’Alembert)
1.3.22
Example 22
\(y=xp^{2}-\frac {1}{p}\)
(d’Alembert)
1.3.23
Example 23
\(y=-x\frac {1}{p}+\frac {1}{2}p\)
(d’Alembert)
1.3.24
Example 24
\(y=x\left ( \frac {p}{2}\pm \frac {1}{2}\sqrt {2-p^{2}}\right ) \)
(d’Alembert)
1.3.25
Example 25
\(y=x\left ( p+a\sqrt {1+p^{2}}\right ) \)
(d’Alembert)
1.3.26
Extra example
[
next
] [
prev
] [
prev-tail
] [
front
] [
up
]