1.3 Examples

1.3.1 Example 1 \(y=xp+\frac {1}{p}\) (Clairaut)
1.3.2 Example 2 \(y=xp-p^{2}\) (Clairaut)
1.3.3 Example 3 \(y=xp-\frac {1}{4}p^{2}\) (Clairaut)
1.3.4 Example 4 \(y=xp^{2}\) (d’Alembert)
1.3.5 Example 5 \(y=x+p^{2}\) (d’Alembert)
1.3.6 Example 6 \(y=-x+\left ( p^{2}-1\right ) \) (d’Alembert)
1.3.7 Example 7 \(y=\frac {1}{p}x+p\) (d’Alembert)
1.3.8 Example 8 \(y=xp^{2}+p^{2}\) (d’Alembert)
1.3.9 Example 9 \(y=\frac {x}{a}p+\frac {b}{a}\frac {1}{p}\) (d’Alembert)
1.3.10 Example 10 \(y=x\left ( p+a\sqrt {1+p^{2}}\right ) \) (d’Alembert)
1.3.11 Example 11 \(y=x+p^{2}\left ( 1-\frac {2}{3}p\right ) \) (d’Alembert)
1.3.12 Example 12 \(y=2x-\frac {1}{2}\ln \left ( \frac {p^{2}}{p-1}\right ) \) (d’Alembert)
1.3.13 Example 13 \(y=xp-\frac {p^{2}}{p+1}\) (Clairaut)
1.3.14 Example 14 \(y=xp+\frac {1}{1+p}\) (Clairaut)
1.3.15 Example 15 \(xyy^{\prime }=y^{2}+x\sqrt {4x^{2}+y^{2}}\) (d’Alembert)
1.3.16 Example 16 \(y=\ln \left ( \cos p\right ) +p\tan p\) (d’Alembert)
1.3.17 Example 17 \(y=x\left ( \frac {1}{2}p+\frac {2}{p}\right ) \) (d’Alembert)
1.3.18 Example 18 \(y=\frac {x}{p}-ap\) (d’Alembert)
1.3.19 Example 19 \(y=xF\left ( p\right ) +G\left ( p\right ) \) (d’Alembert)
1.3.20 Example 20 \(y=xp+\left ( 1+2p+p^{2}\right ) \) (Clairaut)
1.3.21 Example 21 \(y=-x\left ( \frac {2+\sqrt {1+p^{2}}}{2p}\right ) \) (d’Alembert)
1.3.22 Example 22 \(y=xp^{2}-\frac {1}{p}\) (d’Alembert)
1.3.23 Example 23 \(y=-x\frac {1}{p}+\frac {1}{2}p\) (d’Alembert)
1.3.24 Example 24 \(y=x\left ( \frac {p}{2}\pm \frac {1}{2}\sqrt {2-p^{2}}\right ) \) (d’Alembert)
1.3.25 Example 25 \(y=x\left ( p+a\sqrt {1+p^{2}}\right ) \) (d’Alembert)
1.3.26 Extra example