1.3.3 Solved examples

1.3.3.1 Example 1
1.3.3.2 Example 2
1.3.3.3 Example 3
1.3.3.4 Example 4
1.3.3.5 Example 5
1.3.3.6 Example 6
1.3.3.7 Example 7
1.3.3.8 Example 8
1.3.3.9 Example 9
1.3.3.10 Example 10
1.3.3.11 Example 11
1.3.3.12 Example 12
1.3.3.13 Example 13
1.3.3.14 Example 14
1.3.3.15 Example 15
1.3.3.16 Example 16
1.3.3.17 Example 17
1.3.3.18 Extra example

# original ode \(y=xf\left ( p\right ) +g\left ( p\right ) \) \(f\left ( p\right ) \) \(g\left ( p\right ) \) type
\(1\) \(x\left ( y^{\prime }\right ) ^{2}-yy^{\prime }=-1\) \(y=xp+\frac {1}{p}\) \(p\) \(\frac {1}{p}\) Clairaut
\(2\) \(y=xy^{\prime }-\left ( y^{\prime }\right ) ^{2}\) \(y=xp-p^{2}\) \(p\) \(-p^{2}\) Clairaut
\(3\) \(y=xy^{\prime }-\frac {1}{4}\left ( y^{\prime }\right ) ^{2}\) \(y=xp-\frac {1}{4}p^{2}\) \(p\) \(-\frac {1}{4}p^{2}\) Clairaut
\(4\) \(y=x\left ( y^{\prime }\right ) ^{2}\) \(y=xp^{2}\) \(p^{2}\) \(0\) d’Alembert
\(5\) \(y=x+\left ( y^{\prime }\right ) ^{2}\) \(y=x+p^{2}\) \(1\) \(p^{2}\) d’Alembert
\(6\) \(\left ( y^{\prime }\right ) ^{2}-1-x-y=0\) \(y=-x+\left ( p^{2}-1\right ) \) \(-1\) \(\left ( p^{2}-1\right ) \) d’Alembert
\(7\) \(yy^{\prime }-\left ( y^{\prime }\right ) ^{2}=x\) \(y=\frac {1}{p}x+p\) \(\frac {1}{p}\) \(p\) d’Alembert
\(8\) \(y=x\left ( y^{\prime }\right ) ^{2}+\left ( y^{\prime }\right ) ^{2}\) \(y=xp^{2}+p^{2}\) \(p^{2}\) \(p^{2}\) d’Alembert
\(9\) \(y=\frac {x}{a}y^{\prime }+\frac {b}{ay^{\prime }}\) \(y=\frac {x}{a}p+\frac {b}{a}p^{-1}\) \(\frac {p}{a}\) \(\frac {b}{a}p^{-1}\) d’Alembert
\(10\) \(y=x\left ( y^{\prime }+a\sqrt {1+\left ( y^{\prime }\right ) ^{2}}\right ) \) \(y=x\left ( p+a\sqrt {1+p^{2}}\right ) \) \(p+a\sqrt {1+p^{2}}\) \(0\) d’Alembert
\(11\) \(y=x+\left ( y^{\prime }\right ) ^{2}\left ( 1-\frac {2}{3}y^{\prime }\right ) \) \(y=x+p^{2}\left ( 1-\frac {2}{3}p\right ) \) \(1\) \(p^{2}\left ( 1-\frac {2}{3}p\right ) \) d’Alembert
\(12\) \(y=2x-\frac {1}{2}\ln \left ( \frac {\left ( y^{\prime }\right ) ^{2}}{y^{\prime }-1}\right ) \) \(y=2x-\frac {1}{2}\ln \left ( \frac {p^{2}}{p-1}\right ) \) \(2\) \(-\frac {1}{2}\ln \left ( \frac {p^{2}}{p-1}\right ) \) d’Alembert
\(13\) \(\left ( y^{\prime }\right ) ^{2}-x\left ( y^{\prime }\right ) ^{2}+y\left ( 1+y^{\prime }\right ) -xy^{\prime }=0\) \(y=\frac {xp+xp^{2}-p^{2}}{p+1}=xp-\frac {p^{2}}{p+1}\) \(p\) \(-\frac {p^{2}}{p+1}\) Clairaut
\(14\) \(x\left ( y^{\prime }\right ) ^{2}+\left ( x-y\right ) y^{\prime }+1-y=0\) \(y=xp+\frac {1}{1+p}\) \(p\) \(\frac {1}{1+p}\) Clairaut
\(15\) \(xyy^{\prime }=y^{2}+x\sqrt {4x^{2}+y^{2}}\) \(y=\operatorname {RootOf}\left ( h(p)\right ) x\) \(\operatorname {RootOf}\left ( h(p)\right ) \) \(0\) d’Alembert
\(16\) \(\ln \left ( \cos y^{\prime }\right ) +y^{\prime }\tan y^{\prime }=y\) \(y=\ln \left ( \cos y^{\prime }\right ) +y^{\prime }\tan y^{\prime }\) \(0\) \(\ln \left ( \cos p\right ) +p\tan p\) d’Alembert
\(17\) \(x\left ( y^{\prime }\right ) ^{2}-2yy^{\prime }+4x=0\) \(y=x\left ( \frac {1}{2}y^{\prime }+2\frac {1}{y^{\prime }}\right ) \) \(\frac {1}{2}p+\frac {2}{p}\) \(0\) d’Alembert