Chapter 3
Linear second order ode

3.1 Quadrature ode \(y^{\prime \prime }=f\left ( x\right ) \)
3.2 Linear ode with constant coefficients \(Ay^{\prime \prime }+By^{\prime }+Cy=f\left ( x\right ) \)
3.3 Linear ode with non-constant coefficients \(A\left ( x\right ) y^{\prime \prime }+B\left ( x\right ) y^{\prime }+C\left ( x\right ) y=f\left ( x\right ) \)
3.4 Collection of special transformations
3.5 Euler ode \(x^{2}y^{\prime \prime }+xy^{\prime }+y=f\left ( x\right ) \)
3.6 Method of conversion to first order Riccati
3.7 Airy ode \(y^{\prime \prime }\pm kxy=0\) or \(y^{\prime \prime }+by^{\prime }\pm kxy=0\)
3.8 Reduction of order
3.9 Transformation to a constant coefficient ODE methods
3.10 Exact linear second order ode \(p_{2}\left ( x\right ) y^{\prime \prime }+p_{1}\left ( x\right ) y^{\prime }+p_{0}\left ( x\right ) y=f\left ( x\right ) \)
3.11 Linear second order not exact but solved by finding an integrating factor.
3.12 Linear second order not exact but solved by finding an M integrating factor.
3.13 Solved using Lagrange adjoint equation method.
3.14 Solved By transformation on \(B\left ( x\right ) \) for ODE \(Ay^{\prime \prime }\left ( x\right ) +By^{\prime }\left ( x\right ) +C\left ( x\right ) y\left ( x\right ) =0\)
3.15 Bessel type ode \(x^{2}y^{\prime \prime }+xy^{\prime }+\left ( x^{2}-n^{2}\right ) y=f\left ( x\right ) \)
3.16 Bessel form A type ode \(ay^{\prime \prime }+by^{\prime }+(ce^{rx}-m)y=f\left ( x\right ) \)