##### 4.18.20 $$x y'(x)^2+2 y(x) y'(x)-x=0$$

ODE
$x y'(x)^2+2 y(x) y'(x)-x=0$ ODE Classiﬁcation

[[_homogeneous, class A], _dAlembert]

Book solution method
Homogeneous ODE, $$x^n f\left ( \frac {y}{x} , y' \right )=0$$, Solve for $$p$$

Mathematica
cpu = 1.30562 (sec), leaf count = 6977

$\left \{\left \{y(x)\to \frac {-\sqrt {\frac {36 x^6+\frac {36\ 2^{2/3} \left (2 x^6-\cosh (6 c_1)-\sinh (6 c_1)\right ) x^4}{\sqrt [3]{32 x^{12}+40 \cosh (6 c_1) x^6+40 \sinh (6 c_1) x^6-\cosh (12 c_1)-\sinh (12 c_1)+\sqrt {\left (\left (16 x^6+1\right ) \cosh (3 c_1)+\left (1-16 x^6\right ) \sinh (3 c_1)\right ){}^3 (\cosh (15 c_1)+\sinh (15 c_1))}}}+9 \sqrt [3]{2} \sqrt [3]{32 x^{12}+40 \cosh (6 c_1) x^6+40 \sinh (6 c_1) x^6-\cosh (12 c_1)-\sinh (12 c_1)+\sqrt {\left (\left (16 x^6+1\right ) \cosh (3 c_1)+\left (1-16 x^6\right ) \sinh (3 c_1)\right ){}^3 (\cosh (15 c_1)+\sinh (15 c_1))}} x^2+\cosh (6 c_1)+\sinh (6 c_1)}{x^4}} x^2-9 \sqrt {\frac {8 x^2}{9}-\frac {4\ 2^{2/3} \left (2 x^6-\cosh (6 c_1)-\sinh (6 c_1)\right )}{9 \sqrt [3]{32 x^{12}+40 \cosh (6 c_1) x^6+40 \sinh (6 c_1) x^6-\cosh (12 c_1)-\sinh (12 c_1)+\sqrt {\left (\left (16 x^6+1\right ) \cosh (3 c_1)+\left (1-16 x^6\right ) \sinh (3 c_1)\right ){}^3 (\cosh (15 c_1)+\sinh (15 c_1))}}}-\frac {\sqrt [3]{2} \sqrt [3]{32 x^{12}+40 \cosh (6 c_1) x^6+40 \sinh (6 c_1) x^6-\cosh (12 c_1)-\sinh (12 c_1)+\sqrt {\left (\left (16 x^6+1\right ) \cosh (3 c_1)+\left (1-16 x^6\right ) \sinh (3 c_1)\right ){}^3 (\cosh (15 c_1)+\sinh (15 c_1))}}}{9 x^2}+\frac {2 \cosh (6 c_1)}{81 x^4}+\frac {2 \sinh (6 c_1)}{81 x^4}-\frac {2 \left (-432 \cosh (3 c_1) x^6-432 \sinh (3 c_1) x^6+\cosh (9 c_1)+\sinh (9 c_1)\right )}{81 \sqrt {\frac {36 x^6+\frac {36\ 2^{2/3} \left (2 x^6-\cosh (6 c_1)-\sinh (6 c_1)\right ) x^4}{\sqrt [3]{32 x^{12}+40 \cosh (6 c_1) x^6+40 \sinh (6 c_1) x^6-\cosh (12 c_1)-\sinh (12 c_1)+\sqrt {\left (\left (16 x^6+1\right ) \cosh (3 c_1)+\left (1-16 x^6\right ) \sinh (3 c_1)\right ){}^3 (\cosh (15 c_1)+\sinh (15 c_1))}}}+9 \sqrt [3]{2} \sqrt [3]{32 x^{12}+40 \cosh (6 c_1) x^6+40 \sinh (6 c_1) x^6-\cosh (12 c_1)-\sinh (12 c_1)+\sqrt {\left (\left (16 x^6+1\right ) \cosh (3 c_1)+\left (1-16 x^6\right ) \sinh (3 c_1)\right ){}^3 (\cosh (15 c_1)+\sinh (15 c_1))}} x^2+\cosh (6 c_1)+\sinh (6 c_1)}{x^4}} x^6}} x^2+\cosh (3 c_1)+\sinh (3 c_1)}{18 x^2}\right \},\left \{y(x)\to \frac {-\sqrt {\frac {36 x^6+\frac {36\ 2^{2/3} \left (2 x^6-\cosh (6 c_1)-\sinh (6 c_1)\right ) x^4}{\sqrt [3]{32 x^{12}+40 \cosh (6 c_1) x^6+40 \sinh (6 c_1) x^6-\cosh (12 c_1)-\sinh (12 c_1)+\sqrt {\left (\left (16 x^6+1\right ) \cosh (3 c_1)+\left (1-16 x^6\right ) \sinh (3 c_1)\right ){}^3 (\cosh (15 c_1)+\sinh (15 c_1))}}}+9 \sqrt [3]{2} \sqrt [3]{32 x^{12}+40 \cosh (6 c_1) x^6+40 \sinh (6 c_1) x^6-\cosh (12 c_1)-\sinh (12 c_1)+\sqrt {\left (\left (16 x^6+1\right ) \cosh (3 c_1)+\left (1-16 x^6\right ) \sinh (3 c_1)\right ){}^3 (\cosh (15 c_1)+\sinh (15 c_1))}} x^2+\cosh (6 c_1)+\sinh (6 c_1)}{x^4}} x^2+9 \sqrt {\frac {8 x^2}{9}-\frac {4\ 2^{2/3} \left (2 x^6-\cosh (6 c_1)-\sinh (6 c_1)\right )}{9 \sqrt [3]{32 x^{12}+40 \cosh (6 c_1) x^6+40 \sinh (6 c_1) x^6-\cosh (12 c_1)-\sinh (12 c_1)+\sqrt {\left (\left (16 x^6+1\right ) \cosh (3 c_1)+\left (1-16 x^6\right ) \sinh (3 c_1)\right ){}^3 (\cosh (15 c_1)+\sinh (15 c_1))}}}-\frac {\sqrt [3]{2} \sqrt [3]{32 x^{12}+40 \cosh (6 c_1) x^6+40 \sinh (6 c_1) x^6-\cosh (12 c_1)-\sinh (12 c_1)+\sqrt {\left (\left (16 x^6+1\right ) \cosh (3 c_1)+\left (1-16 x^6\right ) \sinh (3 c_1)\right ){}^3 (\cosh (15 c_1)+\sinh (15 c_1))}}}{9 x^2}+\frac {2 \cosh (6 c_1)}{81 x^4}+\frac {2 \sinh (6 c_1)}{81 x^4}-\frac {2 \left (-432 \cosh (3 c_1) x^6-432 \sinh (3 c_1) x^6+\cosh (9 c_1)+\sinh (9 c_1)\right )}{81 \sqrt {\frac {36 x^6+\frac {36\ 2^{2/3} \left (2 x^6-\cosh (6 c_1)-\sinh (6 c_1)\right ) x^4}{\sqrt [3]{32 x^{12}+40 \cosh (6 c_1) x^6+40 \sinh (6 c_1) x^6-\cosh (12 c_1)-\sinh (12 c_1)+\sqrt {\left (\left (16 x^6+1\right ) \cosh (3 c_1)+\left (1-16 x^6\right ) \sinh (3 c_1)\right ){}^3 (\cosh (15 c_1)+\sinh (15 c_1))}}}+9 \sqrt [3]{2} \sqrt [3]{32 x^{12}+40 \cosh (6 c_1) x^6+40 \sinh (6 c_1) x^6-\cosh (12 c_1)-\sinh (12 c_1)+\sqrt {\left (\left (16 x^6+1\right ) \cosh (3 c_1)+\left (1-16 x^6\right ) \sinh (3 c_1)\right ){}^3 (\cosh (15 c_1)+\sinh (15 c_1))}} x^2+\cosh (6 c_1)+\sinh (6 c_1)}{x^4}} x^6}} x^2+\cosh (3 c_1)+\sinh (3 c_1)}{18 x^2}\right \},\left \{y(x)\to \frac {\sqrt {\frac {36 x^6+\frac {36\ 2^{2/3} \left (2 x^6-\cosh (6 c_1)-\sinh (6 c_1)\right ) x^4}{\sqrt [3]{32 x^{12}+40 \cosh (6 c_1) x^6+40 \sinh (6 c_1) x^6-\cosh (12 c_1)-\sinh (12 c_1)+\sqrt {\left (\left (16 x^6+1\right ) \cosh (3 c_1)+\left (1-16 x^6\right ) \sinh (3 c_1)\right ){}^3 (\cosh (15 c_1)+\sinh (15 c_1))}}}+9 \sqrt [3]{2} \sqrt [3]{32 x^{12}+40 \cosh (6 c_1) x^6+40 \sinh (6 c_1) x^6-\cosh (12 c_1)-\sinh (12 c_1)+\sqrt {\left (\left (16 x^6+1\right ) \cosh (3 c_1)+\left (1-16 x^6\right ) \sinh (3 c_1)\right ){}^3 (\cosh (15 c_1)+\sinh (15 c_1))}} x^2+\cosh (6 c_1)+\sinh (6 c_1)}{x^4}} x^2-9 \sqrt {\frac {8 x^2}{9}-\frac {4\ 2^{2/3} \left (2 x^6-\cosh (6 c_1)-\sinh (6 c_1)\right )}{9 \sqrt [3]{32 x^{12}+40 \cosh (6 c_1) x^6+40 \sinh (6 c_1) x^6-\cosh (12 c_1)-\sinh (12 c_1)+\sqrt {\left (\left (16 x^6+1\right ) \cosh (3 c_1)+\left (1-16 x^6\right ) \sinh (3 c_1)\right ){}^3 (\cosh (15 c_1)+\sinh (15 c_1))}}}-\frac {\sqrt [3]{2} \sqrt [3]{32 x^{12}+40 \cosh (6 c_1) x^6+40 \sinh (6 c_1) x^6-\cosh (12 c_1)-\sinh (12 c_1)+\sqrt {\left (\left (16 x^6+1\right ) \cosh (3 c_1)+\left (1-16 x^6\right ) \sinh (3 c_1)\right ){}^3 (\cosh (15 c_1)+\sinh (15 c_1))}}}{9 x^2}+\frac {2 \cosh (6 c_1)}{81 x^4}+\frac {2 \sinh (6 c_1)}{81 x^4}+\frac {2 \left (-432 \cosh (3 c_1) x^6-432 \sinh (3 c_1) x^6+\cosh (9 c_1)+\sinh (9 c_1)\right )}{81 \sqrt {\frac {36 x^6+\frac {36\ 2^{2/3} \left (2 x^6-\cosh (6 c_1)-\sinh (6 c_1)\right ) x^4}{\sqrt [3]{32 x^{12}+40 \cosh (6 c_1) x^6+40 \sinh (6 c_1) x^6-\cosh (12 c_1)-\sinh (12 c_1)+\sqrt {\left (\left (16 x^6+1\right ) \cosh (3 c_1)+\left (1-16 x^6\right ) \sinh (3 c_1)\right ){}^3 (\cosh (15 c_1)+\sinh (15 c_1))}}}+9 \sqrt [3]{2} \sqrt [3]{32 x^{12}+40 \cosh (6 c_1) x^6+40 \sinh (6 c_1) x^6-\cosh (12 c_1)-\sinh (12 c_1)+\sqrt {\left (\left (16 x^6+1\right ) \cosh (3 c_1)+\left (1-16 x^6\right ) \sinh (3 c_1)\right ){}^3 (\cosh (15 c_1)+\sinh (15 c_1))}} x^2+\cosh (6 c_1)+\sinh (6 c_1)}{x^4}} x^6}} x^2+\cosh (3 c_1)+\sinh (3 c_1)}{18 x^2}\right \},\left \{y(x)\to \frac {\sqrt {\frac {36 x^6+\frac {36\ 2^{2/3} \left (2 x^6-\cosh (6 c_1)-\sinh (6 c_1)\right ) x^4}{\sqrt [3]{32 x^{12}+40 \cosh (6 c_1) x^6+40 \sinh (6 c_1) x^6-\cosh (12 c_1)-\sinh (12 c_1)+\sqrt {\left (\left (16 x^6+1\right ) \cosh (3 c_1)+\left (1-16 x^6\right ) \sinh (3 c_1)\right ){}^3 (\cosh (15 c_1)+\sinh (15 c_1))}}}+9 \sqrt [3]{2} \sqrt [3]{32 x^{12}+40 \cosh (6 c_1) x^6+40 \sinh (6 c_1) x^6-\cosh (12 c_1)-\sinh (12 c_1)+\sqrt {\left (\left (16 x^6+1\right ) \cosh (3 c_1)+\left (1-16 x^6\right ) \sinh (3 c_1)\right ){}^3 (\cosh (15 c_1)+\sinh (15 c_1))}} x^2+\cosh (6 c_1)+\sinh (6 c_1)}{x^4}} x^2+9 \sqrt {\frac {8 x^2}{9}-\frac {4\ 2^{2/3} \left (2 x^6-\cosh (6 c_1)-\sinh (6 c_1)\right )}{9 \sqrt [3]{32 x^{12}+40 \cosh (6 c_1) x^6+40 \sinh (6 c_1) x^6-\cosh (12 c_1)-\sinh (12 c_1)+\sqrt {\left (\left (16 x^6+1\right ) \cosh (3 c_1)+\left (1-16 x^6\right ) \sinh (3 c_1)\right ){}^3 (\cosh (15 c_1)+\sinh (15 c_1))}}}-\frac {\sqrt [3]{2} \sqrt [3]{32 x^{12}+40 \cosh (6 c_1) x^6+40 \sinh (6 c_1) x^6-\cosh (12 c_1)-\sinh (12 c_1)+\sqrt {\left (\left (16 x^6+1\right ) \cosh (3 c_1)+\left (1-16 x^6\right ) \sinh (3 c_1)\right ){}^3 (\cosh (15 c_1)+\sinh (15 c_1))}}}{9 x^2}+\frac {2 \cosh (6 c_1)}{81 x^4}+\frac {2 \sinh (6 c_1)}{81 x^4}+\frac {2 \left (-432 \cosh (3 c_1) x^6-432 \sinh (3 c_1) x^6+\cosh (9 c_1)+\sinh (9 c_1)\right )}{81 \sqrt {\frac {36 x^6+\frac {36\ 2^{2/3} \left (2 x^6-\cosh (6 c_1)-\sinh (6 c_1)\right ) x^4}{\sqrt [3]{32 x^{12}+40 \cosh (6 c_1) x^6+40 \sinh (6 c_1) x^6-\cosh (12 c_1)-\sinh (12 c_1)+\sqrt {\left (\left (16 x^6+1\right ) \cosh (3 c_1)+\left (1-16 x^6\right ) \sinh (3 c_1)\right ){}^3 (\cosh (15 c_1)+\sinh (15 c_1))}}}+9 \sqrt [3]{2} \sqrt [3]{32 x^{12}+40 \cosh (6 c_1) x^6+40 \sinh (6 c_1) x^6-\cosh (12 c_1)-\sinh (12 c_1)+\sqrt {\left (\left (16 x^6+1\right ) \cosh (3 c_1)+\left (1-16 x^6\right ) \sinh (3 c_1)\right ){}^3 (\cosh (15 c_1)+\sinh (15 c_1))}} x^2+\cosh (6 c_1)+\sinh (6 c_1)}{x^4}} x^6}} x^2+\cosh (3 c_1)+\sinh (3 c_1)}{18 x^2}\right \},\left \{y(x)\to -\frac {\sqrt {\frac {36 x^6+\frac {36\ 2^{2/3} (\cosh (3 c_1)-\sinh (3 c_1)) \left (\left (2 x^6-1\right ) \cosh (3 c_1)+\left (2 x^6+1\right ) \sinh (3 c_1)\right ) x^4}{\sqrt [3]{32 x^{12}+40 \cosh (6 c_1) x^6-40 \sinh (6 c_1) x^6-\cosh (12 c_1)+\sinh (12 c_1)+(\cosh (18 c_1)-\sinh (18 c_1)) \sqrt {\left (\left (16 x^6+1\right ) \cosh (3 c_1)+\left (16 x^6-1\right ) \sinh (3 c_1)\right ){}^3 (\cosh (21 c_1)+\sinh (21 c_1))}}}+9 \sqrt [3]{2} \sqrt [3]{32 x^{12}+40 \cosh (6 c_1) x^6-40 \sinh (6 c_1) x^6-\cosh (12 c_1)+\sinh (12 c_1)+(\cosh (18 c_1)-\sinh (18 c_1)) \sqrt {\left (\left (16 x^6+1\right ) \cosh (3 c_1)+\left (16 x^6-1\right ) \sinh (3 c_1)\right ){}^3 (\cosh (21 c_1)+\sinh (21 c_1))}} x^2+\cosh (6 c_1)-\sinh (6 c_1)}{x^4}} x^2+\sqrt {72 x^2+\frac {36\ 2^{2/3} (\sinh (3 c_1)-\cosh (3 c_1)) \left (\left (2 x^6-1\right ) \cosh (3 c_1)+\left (2 x^6+1\right ) \sinh (3 c_1)\right )}{\sqrt [3]{32 x^{12}+40 \cosh (6 c_1) x^6-40 \sinh (6 c_1) x^6-\cosh (12 c_1)+\sinh (12 c_1)+(\cosh (18 c_1)-\sinh (18 c_1)) \sqrt {\left (\left (16 x^6+1\right ) \cosh (3 c_1)+\left (16 x^6-1\right ) \sinh (3 c_1)\right ){}^3 (\cosh (21 c_1)+\sinh (21 c_1))}}}-\frac {9 \sqrt [3]{2} \sqrt [3]{32 x^{12}+40 \cosh (6 c_1) x^6-40 \sinh (6 c_1) x^6-\cosh (12 c_1)+\sinh (12 c_1)+(\cosh (18 c_1)-\sinh (18 c_1)) \sqrt {\left (\left (16 x^6+1\right ) \cosh (3 c_1)+\left (16 x^6-1\right ) \sinh (3 c_1)\right ){}^3 (\cosh (21 c_1)+\sinh (21 c_1))}}}{x^2}+\frac {2 \cosh (6 c_1)}{x^4}-\frac {2 \sinh (6 c_1)}{x^4}-\frac {2 \left (432 \cosh (3 c_1) x^6-432 \sinh (3 c_1) x^6-\cosh (9 c_1)+\sinh (9 c_1)\right )}{\sqrt {\frac {36 x^6+\frac {36\ 2^{2/3} (\cosh (3 c_1)-\sinh (3 c_1)) \left (\left (2 x^6-1\right ) \cosh (3 c_1)+\left (2 x^6+1\right ) \sinh (3 c_1)\right ) x^4}{\sqrt [3]{32 x^{12}+40 \cosh (6 c_1) x^6-40 \sinh (6 c_1) x^6-\cosh (12 c_1)+\sinh (12 c_1)+(\cosh (18 c_1)-\sinh (18 c_1)) \sqrt {\left (\left (16 x^6+1\right ) \cosh (3 c_1)+\left (16 x^6-1\right ) \sinh (3 c_1)\right ){}^3 (\cosh (21 c_1)+\sinh (21 c_1))}}}+9 \sqrt [3]{2} \sqrt [3]{32 x^{12}+40 \cosh (6 c_1) x^6-40 \sinh (6 c_1) x^6-\cosh (12 c_1)+\sinh (12 c_1)+(\cosh (18 c_1)-\sinh (18 c_1)) \sqrt {\left (\left (16 x^6+1\right ) \cosh (3 c_1)+\left (16 x^6-1\right ) \sinh (3 c_1)\right ){}^3 (\cosh (21 c_1)+\sinh (21 c_1))}} x^2+\cosh (6 c_1)-\sinh (6 c_1)}{x^4}} x^6}} x^2+\cosh (3 c_1)-\sinh (3 c_1)}{18 x^2}\right \},\left \{y(x)\to \frac {-\sqrt {\frac {36 x^6+\frac {36\ 2^{2/3} (\cosh (3 c_1)-\sinh (3 c_1)) \left (\left (2 x^6-1\right ) \cosh (3 c_1)+\left (2 x^6+1\right ) \sinh (3 c_1)\right ) x^4}{\sqrt [3]{32 x^{12}+40 \cosh (6 c_1) x^6-40 \sinh (6 c_1) x^6-\cosh (12 c_1)+\sinh (12 c_1)+(\cosh (18 c_1)-\sinh (18 c_1)) \sqrt {\left (\left (16 x^6+1\right ) \cosh (3 c_1)+\left (16 x^6-1\right ) \sinh (3 c_1)\right ){}^3 (\cosh (21 c_1)+\sinh (21 c_1))}}}+9 \sqrt [3]{2} \sqrt [3]{32 x^{12}+40 \cosh (6 c_1) x^6-40 \sinh (6 c_1) x^6-\cosh (12 c_1)+\sinh (12 c_1)+(\cosh (18 c_1)-\sinh (18 c_1)) \sqrt {\left (\left (16 x^6+1\right ) \cosh (3 c_1)+\left (16 x^6-1\right ) \sinh (3 c_1)\right ){}^3 (\cosh (21 c_1)+\sinh (21 c_1))}} x^2+\cosh (6 c_1)-\sinh (6 c_1)}{x^4}} x^2+\sqrt {72 x^2+\frac {36\ 2^{2/3} (\sinh (3 c_1)-\cosh (3 c_1)) \left (\left (2 x^6-1\right ) \cosh (3 c_1)+\left (2 x^6+1\right ) \sinh (3 c_1)\right )}{\sqrt [3]{32 x^{12}+40 \cosh (6 c_1) x^6-40 \sinh (6 c_1) x^6-\cosh (12 c_1)+\sinh (12 c_1)+(\cosh (18 c_1)-\sinh (18 c_1)) \sqrt {\left (\left (16 x^6+1\right ) \cosh (3 c_1)+\left (16 x^6-1\right ) \sinh (3 c_1)\right ){}^3 (\cosh (21 c_1)+\sinh (21 c_1))}}}-\frac {9 \sqrt [3]{2} \sqrt [3]{32 x^{12}+40 \cosh (6 c_1) x^6-40 \sinh (6 c_1) x^6-\cosh (12 c_1)+\sinh (12 c_1)+(\cosh (18 c_1)-\sinh (18 c_1)) \sqrt {\left (\left (16 x^6+1\right ) \cosh (3 c_1)+\left (16 x^6-1\right ) \sinh (3 c_1)\right ){}^3 (\cosh (21 c_1)+\sinh (21 c_1))}}}{x^2}+\frac {2 \cosh (6 c_1)}{x^4}-\frac {2 \sinh (6 c_1)}{x^4}-\frac {2 \left (432 \cosh (3 c_1) x^6-432 \sinh (3 c_1) x^6-\cosh (9 c_1)+\sinh (9 c_1)\right )}{\sqrt {\frac {36 x^6+\frac {36\ 2^{2/3} (\cosh (3 c_1)-\sinh (3 c_1)) \left (\left (2 x^6-1\right ) \cosh (3 c_1)+\left (2 x^6+1\right ) \sinh (3 c_1)\right ) x^4}{\sqrt [3]{32 x^{12}+40 \cosh (6 c_1) x^6-40 \sinh (6 c_1) x^6-\cosh (12 c_1)+\sinh (12 c_1)+(\cosh (18 c_1)-\sinh (18 c_1)) \sqrt {\left (\left (16 x^6+1\right ) \cosh (3 c_1)+\left (16 x^6-1\right ) \sinh (3 c_1)\right ){}^3 (\cosh (21 c_1)+\sinh (21 c_1))}}}+9 \sqrt [3]{2} \sqrt [3]{32 x^{12}+40 \cosh (6 c_1) x^6-40 \sinh (6 c_1) x^6-\cosh (12 c_1)+\sinh (12 c_1)+(\cosh (18 c_1)-\sinh (18 c_1)) \sqrt {\left (\left (16 x^6+1\right ) \cosh (3 c_1)+\left (16 x^6-1\right ) \sinh (3 c_1)\right ){}^3 (\cosh (21 c_1)+\sinh (21 c_1))}} x^2+\cosh (6 c_1)-\sinh (6 c_1)}{x^4}} x^6}} x^2-\cosh (3 c_1)+\sinh (3 c_1)}{18 x^2}\right \},\left \{y(x)\to \frac {\sqrt {\frac {36 x^6+\frac {36\ 2^{2/3} (\cosh (3 c_1)-\sinh (3 c_1)) \left (\left (2 x^6-1\right ) \cosh (3 c_1)+\left (2 x^6+1\right ) \sinh (3 c_1)\right ) x^4}{\sqrt [3]{32 x^{12}+40 \cosh (6 c_1) x^6-40 \sinh (6 c_1) x^6-\cosh (12 c_1)+\sinh (12 c_1)+(\cosh (18 c_1)-\sinh (18 c_1)) \sqrt {\left (\left (16 x^6+1\right ) \cosh (3 c_1)+\left (16 x^6-1\right ) \sinh (3 c_1)\right ){}^3 (\cosh (21 c_1)+\sinh (21 c_1))}}}+9 \sqrt [3]{2} \sqrt [3]{32 x^{12}+40 \cosh (6 c_1) x^6-40 \sinh (6 c_1) x^6-\cosh (12 c_1)+\sinh (12 c_1)+(\cosh (18 c_1)-\sinh (18 c_1)) \sqrt {\left (\left (16 x^6+1\right ) \cosh (3 c_1)+\left (16 x^6-1\right ) \sinh (3 c_1)\right ){}^3 (\cosh (21 c_1)+\sinh (21 c_1))}} x^2+\cosh (6 c_1)-\sinh (6 c_1)}{x^4}} x^2-\sqrt {72 x^2+\frac {36\ 2^{2/3} (\sinh (3 c_1)-\cosh (3 c_1)) \left (\left (2 x^6-1\right ) \cosh (3 c_1)+\left (2 x^6+1\right ) \sinh (3 c_1)\right )}{\sqrt [3]{32 x^{12}+40 \cosh (6 c_1) x^6-40 \sinh (6 c_1) x^6-\cosh (12 c_1)+\sinh (12 c_1)+(\cosh (18 c_1)-\sinh (18 c_1)) \sqrt {\left (\left (16 x^6+1\right ) \cosh (3 c_1)+\left (16 x^6-1\right ) \sinh (3 c_1)\right ){}^3 (\cosh (21 c_1)+\sinh (21 c_1))}}}-\frac {9 \sqrt [3]{2} \sqrt [3]{32 x^{12}+40 \cosh (6 c_1) x^6-40 \sinh (6 c_1) x^6-\cosh (12 c_1)+\sinh (12 c_1)+(\cosh (18 c_1)-\sinh (18 c_1)) \sqrt {\left (\left (16 x^6+1\right ) \cosh (3 c_1)+\left (16 x^6-1\right ) \sinh (3 c_1)\right ){}^3 (\cosh (21 c_1)+\sinh (21 c_1))}}}{x^2}+\frac {2 \cosh (6 c_1)}{x^4}-\frac {2 \sinh (6 c_1)}{x^4}+\frac {2 \left (432 \cosh (3 c_1) x^6-432 \sinh (3 c_1) x^6-\cosh (9 c_1)+\sinh (9 c_1)\right )}{\sqrt {\frac {36 x^6+\frac {36\ 2^{2/3} (\cosh (3 c_1)-\sinh (3 c_1)) \left (\left (2 x^6-1\right ) \cosh (3 c_1)+\left (2 x^6+1\right ) \sinh (3 c_1)\right ) x^4}{\sqrt [3]{32 x^{12}+40 \cosh (6 c_1) x^6-40 \sinh (6 c_1) x^6-\cosh (12 c_1)+\sinh (12 c_1)+(\cosh (18 c_1)-\sinh (18 c_1)) \sqrt {\left (\left (16 x^6+1\right ) \cosh (3 c_1)+\left (16 x^6-1\right ) \sinh (3 c_1)\right ){}^3 (\cosh (21 c_1)+\sinh (21 c_1))}}}+9 \sqrt [3]{2} \sqrt [3]{32 x^{12}+40 \cosh (6 c_1) x^6-40 \sinh (6 c_1) x^6-\cosh (12 c_1)+\sinh (12 c_1)+(\cosh (18 c_1)-\sinh (18 c_1)) \sqrt {\left (\left (16 x^6+1\right ) \cosh (3 c_1)+\left (16 x^6-1\right ) \sinh (3 c_1)\right ){}^3 (\cosh (21 c_1)+\sinh (21 c_1))}} x^2+\cosh (6 c_1)-\sinh (6 c_1)}{x^4}} x^6}} x^2-\cosh (3 c_1)+\sinh (3 c_1)}{18 x^2}\right \},\left \{y(x)\to \frac {\sqrt {\frac {36 x^6+\frac {36\ 2^{2/3} (\cosh (3 c_1)-\sinh (3 c_1)) \left (\left (2 x^6-1\right ) \cosh (3 c_1)+\left (2 x^6+1\right ) \sinh (3 c_1)\right ) x^4}{\sqrt [3]{32 x^{12}+40 \cosh (6 c_1) x^6-40 \sinh (6 c_1) x^6-\cosh (12 c_1)+\sinh (12 c_1)+(\cosh (18 c_1)-\sinh (18 c_1)) \sqrt {\left (\left (16 x^6+1\right ) \cosh (3 c_1)+\left (16 x^6-1\right ) \sinh (3 c_1)\right ){}^3 (\cosh (21 c_1)+\sinh (21 c_1))}}}+9 \sqrt [3]{2} \sqrt [3]{32 x^{12}+40 \cosh (6 c_1) x^6-40 \sinh (6 c_1) x^6-\cosh (12 c_1)+\sinh (12 c_1)+(\cosh (18 c_1)-\sinh (18 c_1)) \sqrt {\left (\left (16 x^6+1\right ) \cosh (3 c_1)+\left (16 x^6-1\right ) \sinh (3 c_1)\right ){}^3 (\cosh (21 c_1)+\sinh (21 c_1))}} x^2+\cosh (6 c_1)-\sinh (6 c_1)}{x^4}} x^2+\sqrt {72 x^2+\frac {36\ 2^{2/3} (\sinh (3 c_1)-\cosh (3 c_1)) \left (\left (2 x^6-1\right ) \cosh (3 c_1)+\left (2 x^6+1\right ) \sinh (3 c_1)\right )}{\sqrt [3]{32 x^{12}+40 \cosh (6 c_1) x^6-40 \sinh (6 c_1) x^6-\cosh (12 c_1)+\sinh (12 c_1)+(\cosh (18 c_1)-\sinh (18 c_1)) \sqrt {\left (\left (16 x^6+1\right ) \cosh (3 c_1)+\left (16 x^6-1\right ) \sinh (3 c_1)\right ){}^3 (\cosh (21 c_1)+\sinh (21 c_1))}}}-\frac {9 \sqrt [3]{2} \sqrt [3]{32 x^{12}+40 \cosh (6 c_1) x^6-40 \sinh (6 c_1) x^6-\cosh (12 c_1)+\sinh (12 c_1)+(\cosh (18 c_1)-\sinh (18 c_1)) \sqrt {\left (\left (16 x^6+1\right ) \cosh (3 c_1)+\left (16 x^6-1\right ) \sinh (3 c_1)\right ){}^3 (\cosh (21 c_1)+\sinh (21 c_1))}}}{x^2}+\frac {2 \cosh (6 c_1)}{x^4}-\frac {2 \sinh (6 c_1)}{x^4}+\frac {2 \left (432 \cosh (3 c_1) x^6-432 \sinh (3 c_1) x^6-\cosh (9 c_1)+\sinh (9 c_1)\right )}{\sqrt {\frac {36 x^6+\frac {36\ 2^{2/3} (\cosh (3 c_1)-\sinh (3 c_1)) \left (\left (2 x^6-1\right ) \cosh (3 c_1)+\left (2 x^6+1\right ) \sinh (3 c_1)\right ) x^4}{\sqrt [3]{32 x^{12}+40 \cosh (6 c_1) x^6-40 \sinh (6 c_1) x^6-\cosh (12 c_1)+\sinh (12 c_1)+(\cosh (18 c_1)-\sinh (18 c_1)) \sqrt {\left (\left (16 x^6+1\right ) \cosh (3 c_1)+\left (16 x^6-1\right ) \sinh (3 c_1)\right ){}^3 (\cosh (21 c_1)+\sinh (21 c_1))}}}+9 \sqrt [3]{2} \sqrt [3]{32 x^{12}+40 \cosh (6 c_1) x^6-40 \sinh (6 c_1) x^6-\cosh (12 c_1)+\sinh (12 c_1)+(\cosh (18 c_1)-\sinh (18 c_1)) \sqrt {\left (\left (16 x^6+1\right ) \cosh (3 c_1)+\left (16 x^6-1\right ) \sinh (3 c_1)\right ){}^3 (\cosh (21 c_1)+\sinh (21 c_1))}} x^2+\cosh (6 c_1)-\sinh (6 c_1)}{x^4}} x^6}} x^2-\cosh (3 c_1)+\sinh (3 c_1)}{18 x^2}\right \}\right \}$

Maple
cpu = 0.101 (sec), leaf count = 110

$\left [x -\frac {\left (-y \left (x \right )+\sqrt {x^{2}+y \left (x \right )^{2}}\right ) \textit {\_C1}}{x \left (\frac {2 x^{2}+6 y \left (x \right )^{2}-6 y \left (x \right ) \sqrt {x^{2}+y \left (x \right )^{2}}}{x^{2}}\right )^{\frac {2}{3}}} = 0, \frac {\textit {\_C1} \left (y \left (x \right )+\sqrt {x^{2}+y \left (x \right )^{2}}\right )}{x \left (\frac {3 y \left (x \right ) \sqrt {x^{2}+y \left (x \right )^{2}}+x^{2}+3 y \left (x \right )^{2}}{x^{2}}\right )^{\frac {2}{3}}}+x = 0\right ]$ Mathematica raw input

DSolve[-x + 2*y[x]*y'[x] + x*y'[x]^2 == 0,y[x],x]

Mathematica raw output

{{y[x] -> (Cosh[3*C[1]] + Sinh[3*C[1]] - x^2*Sqrt[(36*x^6 + Cosh[6*C[1]] + Sinh[
6*C[1]] + (36*2^(2/3)*x^4*(2*x^6 - Cosh[6*C[1]] - Sinh[6*C[1]]))/(32*x^12 + 40*x
^6*Cosh[6*C[1]] - Cosh[12*C[1]] + 40*x^6*Sinh[6*C[1]] - Sinh[12*C[1]] + Sqrt[((1
 + 16*x^6)*Cosh[3*C[1]] + (1 - 16*x^6)*Sinh[3*C[1]])^3*(Cosh[15*C[1]] + Sinh[15*
C[1]])])^(1/3) + 9*2^(1/3)*x^2*(32*x^12 + 40*x^6*Cosh[6*C[1]] - Cosh[12*C[1]] +
40*x^6*Sinh[6*C[1]] - Sinh[12*C[1]] + Sqrt[((1 + 16*x^6)*Cosh[3*C[1]] + (1 - 16*
x^6)*Sinh[3*C[1]])^3*(Cosh[15*C[1]] + Sinh[15*C[1]])])^(1/3))/x^4] - 9*x^2*Sqrt[
(8*x^2)/9 + (2*Cosh[6*C[1]])/(81*x^4) + (2*Sinh[6*C[1]])/(81*x^4) - (4*2^(2/3)*(
2*x^6 - Cosh[6*C[1]] - Sinh[6*C[1]]))/(9*(32*x^12 + 40*x^6*Cosh[6*C[1]] - Cosh[1
2*C[1]] + 40*x^6*Sinh[6*C[1]] - Sinh[12*C[1]] + Sqrt[((1 + 16*x^6)*Cosh[3*C[1]]
+ (1 - 16*x^6)*Sinh[3*C[1]])^3*(Cosh[15*C[1]] + Sinh[15*C[1]])])^(1/3)) - (2^(1/
3)*(32*x^12 + 40*x^6*Cosh[6*C[1]] - Cosh[12*C[1]] + 40*x^6*Sinh[6*C[1]] - Sinh[1
2*C[1]] + Sqrt[((1 + 16*x^6)*Cosh[3*C[1]] + (1 - 16*x^6)*Sinh[3*C[1]])^3*(Cosh[1
5*C[1]] + Sinh[15*C[1]])])^(1/3))/(9*x^2) - (2*(-432*x^6*Cosh[3*C[1]] + Cosh[9*C
[1]] - 432*x^6*Sinh[3*C[1]] + Sinh[9*C[1]]))/(81*x^6*Sqrt[(36*x^6 + Cosh[6*C[1]]
 + Sinh[6*C[1]] + (36*2^(2/3)*x^4*(2*x^6 - Cosh[6*C[1]] - Sinh[6*C[1]]))/(32*x^1
2 + 40*x^6*Cosh[6*C[1]] - Cosh[12*C[1]] + 40*x^6*Sinh[6*C[1]] - Sinh[12*C[1]] +
Sqrt[((1 + 16*x^6)*Cosh[3*C[1]] + (1 - 16*x^6)*Sinh[3*C[1]])^3*(Cosh[15*C[1]] +
Sinh[15*C[1]])])^(1/3) + 9*2^(1/3)*x^2*(32*x^12 + 40*x^6*Cosh[6*C[1]] - Cosh[12*
C[1]] + 40*x^6*Sinh[6*C[1]] - Sinh[12*C[1]] + Sqrt[((1 + 16*x^6)*Cosh[3*C[1]] +
(1 - 16*x^6)*Sinh[3*C[1]])^3*(Cosh[15*C[1]] + Sinh[15*C[1]])])^(1/3))/x^4])])/(1
8*x^2)}, {y[x] -> (Cosh[3*C[1]] + Sinh[3*C[1]] - x^2*Sqrt[(36*x^6 + Cosh[6*C[1]]
 + Sinh[6*C[1]] + (36*2^(2/3)*x^4*(2*x^6 - Cosh[6*C[1]] - Sinh[6*C[1]]))/(32*x^1
2 + 40*x^6*Cosh[6*C[1]] - Cosh[12*C[1]] + 40*x^6*Sinh[6*C[1]] - Sinh[12*C[1]] +
Sqrt[((1 + 16*x^6)*Cosh[3*C[1]] + (1 - 16*x^6)*Sinh[3*C[1]])^3*(Cosh[15*C[1]] +
Sinh[15*C[1]])])^(1/3) + 9*2^(1/3)*x^2*(32*x^12 + 40*x^6*Cosh[6*C[1]] - Cosh[12*
C[1]] + 40*x^6*Sinh[6*C[1]] - Sinh[12*C[1]] + Sqrt[((1 + 16*x^6)*Cosh[3*C[1]] +
(1 - 16*x^6)*Sinh[3*C[1]])^3*(Cosh[15*C[1]] + Sinh[15*C[1]])])^(1/3))/x^4] + 9*x
^2*Sqrt[(8*x^2)/9 + (2*Cosh[6*C[1]])/(81*x^4) + (2*Sinh[6*C[1]])/(81*x^4) - (4*2
^(2/3)*(2*x^6 - Cosh[6*C[1]] - Sinh[6*C[1]]))/(9*(32*x^12 + 40*x^6*Cosh[6*C[1]]
- Cosh[12*C[1]] + 40*x^6*Sinh[6*C[1]] - Sinh[12*C[1]] + Sqrt[((1 + 16*x^6)*Cosh[
3*C[1]] + (1 - 16*x^6)*Sinh[3*C[1]])^3*(Cosh[15*C[1]] + Sinh[15*C[1]])])^(1/3))
- (2^(1/3)*(32*x^12 + 40*x^6*Cosh[6*C[1]] - Cosh[12*C[1]] + 40*x^6*Sinh[6*C[1]]
- Sinh[12*C[1]] + Sqrt[((1 + 16*x^6)*Cosh[3*C[1]] + (1 - 16*x^6)*Sinh[3*C[1]])^3
*(Cosh[15*C[1]] + Sinh[15*C[1]])])^(1/3))/(9*x^2) - (2*(-432*x^6*Cosh[3*C[1]] +
Cosh[9*C[1]] - 432*x^6*Sinh[3*C[1]] + Sinh[9*C[1]]))/(81*x^6*Sqrt[(36*x^6 + Cosh
[6*C[1]] + Sinh[6*C[1]] + (36*2^(2/3)*x^4*(2*x^6 - Cosh[6*C[1]] - Sinh[6*C[1]]))
/(32*x^12 + 40*x^6*Cosh[6*C[1]] - Cosh[12*C[1]] + 40*x^6*Sinh[6*C[1]] - Sinh[12*
C[1]] + Sqrt[((1 + 16*x^6)*Cosh[3*C[1]] + (1 - 16*x^6)*Sinh[3*C[1]])^3*(Cosh[15*
C[1]] + Sinh[15*C[1]])])^(1/3) + 9*2^(1/3)*x^2*(32*x^12 + 40*x^6*Cosh[6*C[1]] -
Cosh[12*C[1]] + 40*x^6*Sinh[6*C[1]] - Sinh[12*C[1]] + Sqrt[((1 + 16*x^6)*Cosh[3*
C[1]] + (1 - 16*x^6)*Sinh[3*C[1]])^3*(Cosh[15*C[1]] + Sinh[15*C[1]])])^(1/3))/x^
4])])/(18*x^2)}, {y[x] -> (Cosh[3*C[1]] + Sinh[3*C[1]] + x^2*Sqrt[(36*x^6 + Cosh
[6*C[1]] + Sinh[6*C[1]] + (36*2^(2/3)*x^4*(2*x^6 - Cosh[6*C[1]] - Sinh[6*C[1]]))
/(32*x^12 + 40*x^6*Cosh[6*C[1]] - Cosh[12*C[1]] + 40*x^6*Sinh[6*C[1]] - Sinh[12*
C[1]] + Sqrt[((1 + 16*x^6)*Cosh[3*C[1]] + (1 - 16*x^6)*Sinh[3*C[1]])^3*(Cosh[15*
C[1]] + Sinh[15*C[1]])])^(1/3) + 9*2^(1/3)*x^2*(32*x^12 + 40*x^6*Cosh[6*C[1]] -
Cosh[12*C[1]] + 40*x^6*Sinh[6*C[1]] - Sinh[12*C[1]] + Sqrt[((1 + 16*x^6)*Cosh[3*
C[1]] + (1 - 16*x^6)*Sinh[3*C[1]])^3*(Cosh[15*C[1]] + Sinh[15*C[1]])])^(1/3))/x^
4] - 9*x^2*Sqrt[(8*x^2)/9 + (2*Cosh[6*C[1]])/(81*x^4) + (2*Sinh[6*C[1]])/(81*x^4
) - (4*2^(2/3)*(2*x^6 - Cosh[6*C[1]] - Sinh[6*C[1]]))/(9*(32*x^12 + 40*x^6*Cosh[
6*C[1]] - Cosh[12*C[1]] + 40*x^6*Sinh[6*C[1]] - Sinh[12*C[1]] + Sqrt[((1 + 16*x^
6)*Cosh[3*C[1]] + (1 - 16*x^6)*Sinh[3*C[1]])^3*(Cosh[15*C[1]] + Sinh[15*C[1]])])
^(1/3)) - (2^(1/3)*(32*x^12 + 40*x^6*Cosh[6*C[1]] - Cosh[12*C[1]] + 40*x^6*Sinh[
6*C[1]] - Sinh[12*C[1]] + Sqrt[((1 + 16*x^6)*Cosh[3*C[1]] + (1 - 16*x^6)*Sinh[3*
C[1]])^3*(Cosh[15*C[1]] + Sinh[15*C[1]])])^(1/3))/(9*x^2) + (2*(-432*x^6*Cosh[3*
C[1]] + Cosh[9*C[1]] - 432*x^6*Sinh[3*C[1]] + Sinh[9*C[1]]))/(81*x^6*Sqrt[(36*x^
6 + Cosh[6*C[1]] + Sinh[6*C[1]] + (36*2^(2/3)*x^4*(2*x^6 - Cosh[6*C[1]] - Sinh[6
*C[1]]))/(32*x^12 + 40*x^6*Cosh[6*C[1]] - Cosh[12*C[1]] + 40*x^6*Sinh[6*C[1]] -
Sinh[12*C[1]] + Sqrt[((1 + 16*x^6)*Cosh[3*C[1]] + (1 - 16*x^6)*Sinh[3*C[1]])^3*(
Cosh[15*C[1]] + Sinh[15*C[1]])])^(1/3) + 9*2^(1/3)*x^2*(32*x^12 + 40*x^6*Cosh[6*
C[1]] - Cosh[12*C[1]] + 40*x^6*Sinh[6*C[1]] - Sinh[12*C[1]] + Sqrt[((1 + 16*x^6)
*Cosh[3*C[1]] + (1 - 16*x^6)*Sinh[3*C[1]])^3*(Cosh[15*C[1]] + Sinh[15*C[1]])])^(
1/3))/x^4])])/(18*x^2)}, {y[x] -> (Cosh[3*C[1]] + Sinh[3*C[1]] + x^2*Sqrt[(36*x^
6 + Cosh[6*C[1]] + Sinh[6*C[1]] + (36*2^(2/3)*x^4*(2*x^6 - Cosh[6*C[1]] - Sinh[6
*C[1]]))/(32*x^12 + 40*x^6*Cosh[6*C[1]] - Cosh[12*C[1]] + 40*x^6*Sinh[6*C[1]] -
Sinh[12*C[1]] + Sqrt[((1 + 16*x^6)*Cosh[3*C[1]] + (1 - 16*x^6)*Sinh[3*C[1]])^3*(
Cosh[15*C[1]] + Sinh[15*C[1]])])^(1/3) + 9*2^(1/3)*x^2*(32*x^12 + 40*x^6*Cosh[6*
C[1]] - Cosh[12*C[1]] + 40*x^6*Sinh[6*C[1]] - Sinh[12*C[1]] + Sqrt[((1 + 16*x^6)
*Cosh[3*C[1]] + (1 - 16*x^6)*Sinh[3*C[1]])^3*(Cosh[15*C[1]] + Sinh[15*C[1]])])^(
1/3))/x^4] + 9*x^2*Sqrt[(8*x^2)/9 + (2*Cosh[6*C[1]])/(81*x^4) + (2*Sinh[6*C[1]])
/(81*x^4) - (4*2^(2/3)*(2*x^6 - Cosh[6*C[1]] - Sinh[6*C[1]]))/(9*(32*x^12 + 40*x
^6*Cosh[6*C[1]] - Cosh[12*C[1]] + 40*x^6*Sinh[6*C[1]] - Sinh[12*C[1]] + Sqrt[((1
 + 16*x^6)*Cosh[3*C[1]] + (1 - 16*x^6)*Sinh[3*C[1]])^3*(Cosh[15*C[1]] + Sinh[15*
C[1]])])^(1/3)) - (2^(1/3)*(32*x^12 + 40*x^6*Cosh[6*C[1]] - Cosh[12*C[1]] + 40*x
^6*Sinh[6*C[1]] - Sinh[12*C[1]] + Sqrt[((1 + 16*x^6)*Cosh[3*C[1]] + (1 - 16*x^6)
*Sinh[3*C[1]])^3*(Cosh[15*C[1]] + Sinh[15*C[1]])])^(1/3))/(9*x^2) + (2*(-432*x^6
*Cosh[3*C[1]] + Cosh[9*C[1]] - 432*x^6*Sinh[3*C[1]] + Sinh[9*C[1]]))/(81*x^6*Sqr
t[(36*x^6 + Cosh[6*C[1]] + Sinh[6*C[1]] + (36*2^(2/3)*x^4*(2*x^6 - Cosh[6*C[1]]
- Sinh[6*C[1]]))/(32*x^12 + 40*x^6*Cosh[6*C[1]] - Cosh[12*C[1]] + 40*x^6*Sinh[6*
C[1]] - Sinh[12*C[1]] + Sqrt[((1 + 16*x^6)*Cosh[3*C[1]] + (1 - 16*x^6)*Sinh[3*C[
1]])^3*(Cosh[15*C[1]] + Sinh[15*C[1]])])^(1/3) + 9*2^(1/3)*x^2*(32*x^12 + 40*x^6
*Cosh[6*C[1]] - Cosh[12*C[1]] + 40*x^6*Sinh[6*C[1]] - Sinh[12*C[1]] + Sqrt[((1 +
 16*x^6)*Cosh[3*C[1]] + (1 - 16*x^6)*Sinh[3*C[1]])^3*(Cosh[15*C[1]] + Sinh[15*C[
1]])])^(1/3))/x^4])])/(18*x^2)}, {y[x] -> -1/18*(Cosh[3*C[1]] - Sinh[3*C[1]] + x
^2*Sqrt[(36*x^6 + Cosh[6*C[1]] - Sinh[6*C[1]] + (36*2^(2/3)*x^4*(Cosh[3*C[1]] -
Sinh[3*C[1]])*((-1 + 2*x^6)*Cosh[3*C[1]] + (1 + 2*x^6)*Sinh[3*C[1]]))/(32*x^12 +
 40*x^6*Cosh[6*C[1]] - Cosh[12*C[1]] - 40*x^6*Sinh[6*C[1]] + Sinh[12*C[1]] + (Co
sh[18*C[1]] - Sinh[18*C[1]])*Sqrt[((1 + 16*x^6)*Cosh[3*C[1]] + (-1 + 16*x^6)*Sin
h[3*C[1]])^3*(Cosh[21*C[1]] + Sinh[21*C[1]])])^(1/3) + 9*2^(1/3)*x^2*(32*x^12 +
40*x^6*Cosh[6*C[1]] - Cosh[12*C[1]] - 40*x^6*Sinh[6*C[1]] + Sinh[12*C[1]] + (Cos
h[18*C[1]] - Sinh[18*C[1]])*Sqrt[((1 + 16*x^6)*Cosh[3*C[1]] + (-1 + 16*x^6)*Sinh
[3*C[1]])^3*(Cosh[21*C[1]] + Sinh[21*C[1]])])^(1/3))/x^4] + x^2*Sqrt[72*x^2 + (2
*Cosh[6*C[1]])/x^4 - (2*Sinh[6*C[1]])/x^4 + (36*2^(2/3)*(-Cosh[3*C[1]] + Sinh[3*
C[1]])*((-1 + 2*x^6)*Cosh[3*C[1]] + (1 + 2*x^6)*Sinh[3*C[1]]))/(32*x^12 + 40*x^6
*Cosh[6*C[1]] - Cosh[12*C[1]] - 40*x^6*Sinh[6*C[1]] + Sinh[12*C[1]] + (Cosh[18*C
[1]] - Sinh[18*C[1]])*Sqrt[((1 + 16*x^6)*Cosh[3*C[1]] + (-1 + 16*x^6)*Sinh[3*C[1
]])^3*(Cosh[21*C[1]] + Sinh[21*C[1]])])^(1/3) - (9*2^(1/3)*(32*x^12 + 40*x^6*Cos
h[6*C[1]] - Cosh[12*C[1]] - 40*x^6*Sinh[6*C[1]] + Sinh[12*C[1]] + (Cosh[18*C[1]]
 - Sinh[18*C[1]])*Sqrt[((1 + 16*x^6)*Cosh[3*C[1]] + (-1 + 16*x^6)*Sinh[3*C[1]])^
3*(Cosh[21*C[1]] + Sinh[21*C[1]])])^(1/3))/x^2 - (2*(432*x^6*Cosh[3*C[1]] - Cosh
[9*C[1]] - 432*x^6*Sinh[3*C[1]] + Sinh[9*C[1]]))/(x^6*Sqrt[(36*x^6 + Cosh[6*C[1]
] - Sinh[6*C[1]] + (36*2^(2/3)*x^4*(Cosh[3*C[1]] - Sinh[3*C[1]])*((-1 + 2*x^6)*C
osh[3*C[1]] + (1 + 2*x^6)*Sinh[3*C[1]]))/(32*x^12 + 40*x^6*Cosh[6*C[1]] - Cosh[1
2*C[1]] - 40*x^6*Sinh[6*C[1]] + Sinh[12*C[1]] + (Cosh[18*C[1]] - Sinh[18*C[1]])*
Sqrt[((1 + 16*x^6)*Cosh[3*C[1]] + (-1 + 16*x^6)*Sinh[3*C[1]])^3*(Cosh[21*C[1]] +
 Sinh[21*C[1]])])^(1/3) + 9*2^(1/3)*x^2*(32*x^12 + 40*x^6*Cosh[6*C[1]] - Cosh[12
*C[1]] - 40*x^6*Sinh[6*C[1]] + Sinh[12*C[1]] + (Cosh[18*C[1]] - Sinh[18*C[1]])*S
qrt[((1 + 16*x^6)*Cosh[3*C[1]] + (-1 + 16*x^6)*Sinh[3*C[1]])^3*(Cosh[21*C[1]] +
Sinh[21*C[1]])])^(1/3))/x^4])])/x^2}, {y[x] -> (-Cosh[3*C[1]] + Sinh[3*C[1]] - x
^2*Sqrt[(36*x^6 + Cosh[6*C[1]] - Sinh[6*C[1]] + (36*2^(2/3)*x^4*(Cosh[3*C[1]] -
Sinh[3*C[1]])*((-1 + 2*x^6)*Cosh[3*C[1]] + (1 + 2*x^6)*Sinh[3*C[1]]))/(32*x^12 +
 40*x^6*Cosh[6*C[1]] - Cosh[12*C[1]] - 40*x^6*Sinh[6*C[1]] + Sinh[12*C[1]] + (Co
sh[18*C[1]] - Sinh[18*C[1]])*Sqrt[((1 + 16*x^6)*Cosh[3*C[1]] + (-1 + 16*x^6)*Sin
h[3*C[1]])^3*(Cosh[21*C[1]] + Sinh[21*C[1]])])^(1/3) + 9*2^(1/3)*x^2*(32*x^12 +
40*x^6*Cosh[6*C[1]] - Cosh[12*C[1]] - 40*x^6*Sinh[6*C[1]] + Sinh[12*C[1]] + (Cos
h[18*C[1]] - Sinh[18*C[1]])*Sqrt[((1 + 16*x^6)*Cosh[3*C[1]] + (-1 + 16*x^6)*Sinh
[3*C[1]])^3*(Cosh[21*C[1]] + Sinh[21*C[1]])])^(1/3))/x^4] + x^2*Sqrt[72*x^2 + (2
*Cosh[6*C[1]])/x^4 - (2*Sinh[6*C[1]])/x^4 + (36*2^(2/3)*(-Cosh[3*C[1]] + Sinh[3*
C[1]])*((-1 + 2*x^6)*Cosh[3*C[1]] + (1 + 2*x^6)*Sinh[3*C[1]]))/(32*x^12 + 40*x^6
*Cosh[6*C[1]] - Cosh[12*C[1]] - 40*x^6*Sinh[6*C[1]] + Sinh[12*C[1]] + (Cosh[18*C
[1]] - Sinh[18*C[1]])*Sqrt[((1 + 16*x^6)*Cosh[3*C[1]] + (-1 + 16*x^6)*Sinh[3*C[1
]])^3*(Cosh[21*C[1]] + Sinh[21*C[1]])])^(1/3) - (9*2^(1/3)*(32*x^12 + 40*x^6*Cos
h[6*C[1]] - Cosh[12*C[1]] - 40*x^6*Sinh[6*C[1]] + Sinh[12*C[1]] + (Cosh[18*C[1]]
 - Sinh[18*C[1]])*Sqrt[((1 + 16*x^6)*Cosh[3*C[1]] + (-1 + 16*x^6)*Sinh[3*C[1]])^
3*(Cosh[21*C[1]] + Sinh[21*C[1]])])^(1/3))/x^2 - (2*(432*x^6*Cosh[3*C[1]] - Cosh
[9*C[1]] - 432*x^6*Sinh[3*C[1]] + Sinh[9*C[1]]))/(x^6*Sqrt[(36*x^6 + Cosh[6*C[1]
] - Sinh[6*C[1]] + (36*2^(2/3)*x^4*(Cosh[3*C[1]] - Sinh[3*C[1]])*((-1 + 2*x^6)*C
osh[3*C[1]] + (1 + 2*x^6)*Sinh[3*C[1]]))/(32*x^12 + 40*x^6*Cosh[6*C[1]] - Cosh[1
2*C[1]] - 40*x^6*Sinh[6*C[1]] + Sinh[12*C[1]] + (Cosh[18*C[1]] - Sinh[18*C[1]])*
Sqrt[((1 + 16*x^6)*Cosh[3*C[1]] + (-1 + 16*x^6)*Sinh[3*C[1]])^3*(Cosh[21*C[1]] +
 Sinh[21*C[1]])])^(1/3) + 9*2^(1/3)*x^2*(32*x^12 + 40*x^6*Cosh[6*C[1]] - Cosh[12
*C[1]] - 40*x^6*Sinh[6*C[1]] + Sinh[12*C[1]] + (Cosh[18*C[1]] - Sinh[18*C[1]])*S
qrt[((1 + 16*x^6)*Cosh[3*C[1]] + (-1 + 16*x^6)*Sinh[3*C[1]])^3*(Cosh[21*C[1]] +
Sinh[21*C[1]])])^(1/3))/x^4])])/(18*x^2)}, {y[x] -> (-Cosh[3*C[1]] + Sinh[3*C[1]
] + x^2*Sqrt[(36*x^6 + Cosh[6*C[1]] - Sinh[6*C[1]] + (36*2^(2/3)*x^4*(Cosh[3*C[1
]] - Sinh[3*C[1]])*((-1 + 2*x^6)*Cosh[3*C[1]] + (1 + 2*x^6)*Sinh[3*C[1]]))/(32*x
^12 + 40*x^6*Cosh[6*C[1]] - Cosh[12*C[1]] - 40*x^6*Sinh[6*C[1]] + Sinh[12*C[1]]
+ (Cosh[18*C[1]] - Sinh[18*C[1]])*Sqrt[((1 + 16*x^6)*Cosh[3*C[1]] + (-1 + 16*x^6
)*Sinh[3*C[1]])^3*(Cosh[21*C[1]] + Sinh[21*C[1]])])^(1/3) + 9*2^(1/3)*x^2*(32*x^
12 + 40*x^6*Cosh[6*C[1]] - Cosh[12*C[1]] - 40*x^6*Sinh[6*C[1]] + Sinh[12*C[1]] +
 (Cosh[18*C[1]] - Sinh[18*C[1]])*Sqrt[((1 + 16*x^6)*Cosh[3*C[1]] + (-1 + 16*x^6)
*Sinh[3*C[1]])^3*(Cosh[21*C[1]] + Sinh[21*C[1]])])^(1/3))/x^4] - x^2*Sqrt[72*x^2
 + (2*Cosh[6*C[1]])/x^4 - (2*Sinh[6*C[1]])/x^4 + (36*2^(2/3)*(-Cosh[3*C[1]] + Si
nh[3*C[1]])*((-1 + 2*x^6)*Cosh[3*C[1]] + (1 + 2*x^6)*Sinh[3*C[1]]))/(32*x^12 + 4
0*x^6*Cosh[6*C[1]] - Cosh[12*C[1]] - 40*x^6*Sinh[6*C[1]] + Sinh[12*C[1]] + (Cosh
[18*C[1]] - Sinh[18*C[1]])*Sqrt[((1 + 16*x^6)*Cosh[3*C[1]] + (-1 + 16*x^6)*Sinh[
3*C[1]])^3*(Cosh[21*C[1]] + Sinh[21*C[1]])])^(1/3) - (9*2^(1/3)*(32*x^12 + 40*x^
6*Cosh[6*C[1]] - Cosh[12*C[1]] - 40*x^6*Sinh[6*C[1]] + Sinh[12*C[1]] + (Cosh[18*
C[1]] - Sinh[18*C[1]])*Sqrt[((1 + 16*x^6)*Cosh[3*C[1]] + (-1 + 16*x^6)*Sinh[3*C[
1]])^3*(Cosh[21*C[1]] + Sinh[21*C[1]])])^(1/3))/x^2 + (2*(432*x^6*Cosh[3*C[1]] -
 Cosh[9*C[1]] - 432*x^6*Sinh[3*C[1]] + Sinh[9*C[1]]))/(x^6*Sqrt[(36*x^6 + Cosh[6
*C[1]] - Sinh[6*C[1]] + (36*2^(2/3)*x^4*(Cosh[3*C[1]] - Sinh[3*C[1]])*((-1 + 2*x
^6)*Cosh[3*C[1]] + (1 + 2*x^6)*Sinh[3*C[1]]))/(32*x^12 + 40*x^6*Cosh[6*C[1]] - C
osh[12*C[1]] - 40*x^6*Sinh[6*C[1]] + Sinh[12*C[1]] + (Cosh[18*C[1]] - Sinh[18*C[
1]])*Sqrt[((1 + 16*x^6)*Cosh[3*C[1]] + (-1 + 16*x^6)*Sinh[3*C[1]])^3*(Cosh[21*C[
1]] + Sinh[21*C[1]])])^(1/3) + 9*2^(1/3)*x^2*(32*x^12 + 40*x^6*Cosh[6*C[1]] - Co
sh[12*C[1]] - 40*x^6*Sinh[6*C[1]] + Sinh[12*C[1]] + (Cosh[18*C[1]] - Sinh[18*C[1
]])*Sqrt[((1 + 16*x^6)*Cosh[3*C[1]] + (-1 + 16*x^6)*Sinh[3*C[1]])^3*(Cosh[21*C[1
]] + Sinh[21*C[1]])])^(1/3))/x^4])])/(18*x^2)}, {y[x] -> (-Cosh[3*C[1]] + Sinh[3
*C[1]] + x^2*Sqrt[(36*x^6 + Cosh[6*C[1]] - Sinh[6*C[1]] + (36*2^(2/3)*x^4*(Cosh[
3*C[1]] - Sinh[3*C[1]])*((-1 + 2*x^6)*Cosh[3*C[1]] + (1 + 2*x^6)*Sinh[3*C[1]]))/
(32*x^12 + 40*x^6*Cosh[6*C[1]] - Cosh[12*C[1]] - 40*x^6*Sinh[6*C[1]] + Sinh[12*C
[1]] + (Cosh[18*C[1]] - Sinh[18*C[1]])*Sqrt[((1 + 16*x^6)*Cosh[3*C[1]] + (-1 + 1
6*x^6)*Sinh[3*C[1]])^3*(Cosh[21*C[1]] + Sinh[21*C[1]])])^(1/3) + 9*2^(1/3)*x^2*(
32*x^12 + 40*x^6*Cosh[6*C[1]] - Cosh[12*C[1]] - 40*x^6*Sinh[6*C[1]] + Sinh[12*C[
1]] + (Cosh[18*C[1]] - Sinh[18*C[1]])*Sqrt[((1 + 16*x^6)*Cosh[3*C[1]] + (-1 + 16
*x^6)*Sinh[3*C[1]])^3*(Cosh[21*C[1]] + Sinh[21*C[1]])])^(1/3))/x^4] + x^2*Sqrt[7
2*x^2 + (2*Cosh[6*C[1]])/x^4 - (2*Sinh[6*C[1]])/x^4 + (36*2^(2/3)*(-Cosh[3*C[1]]
 + Sinh[3*C[1]])*((-1 + 2*x^6)*Cosh[3*C[1]] + (1 + 2*x^6)*Sinh[3*C[1]]))/(32*x^1
2 + 40*x^6*Cosh[6*C[1]] - Cosh[12*C[1]] - 40*x^6*Sinh[6*C[1]] + Sinh[12*C[1]] +
(Cosh[18*C[1]] - Sinh[18*C[1]])*Sqrt[((1 + 16*x^6)*Cosh[3*C[1]] + (-1 + 16*x^6)*
Sinh[3*C[1]])^3*(Cosh[21*C[1]] + Sinh[21*C[1]])])^(1/3) - (9*2^(1/3)*(32*x^12 +
40*x^6*Cosh[6*C[1]] - Cosh[12*C[1]] - 40*x^6*Sinh[6*C[1]] + Sinh[12*C[1]] + (Cos
h[18*C[1]] - Sinh[18*C[1]])*Sqrt[((1 + 16*x^6)*Cosh[3*C[1]] + (-1 + 16*x^6)*Sinh
[3*C[1]])^3*(Cosh[21*C[1]] + Sinh[21*C[1]])])^(1/3))/x^2 + (2*(432*x^6*Cosh[3*C[
1]] - Cosh[9*C[1]] - 432*x^6*Sinh[3*C[1]] + Sinh[9*C[1]]))/(x^6*Sqrt[(36*x^6 + C
osh[6*C[1]] - Sinh[6*C[1]] + (36*2^(2/3)*x^4*(Cosh[3*C[1]] - Sinh[3*C[1]])*((-1
+ 2*x^6)*Cosh[3*C[1]] + (1 + 2*x^6)*Sinh[3*C[1]]))/(32*x^12 + 40*x^6*Cosh[6*C[1]
] - Cosh[12*C[1]] - 40*x^6*Sinh[6*C[1]] + Sinh[12*C[1]] + (Cosh[18*C[1]] - Sinh[
18*C[1]])*Sqrt[((1 + 16*x^6)*Cosh[3*C[1]] + (-1 + 16*x^6)*Sinh[3*C[1]])^3*(Cosh[
21*C[1]] + Sinh[21*C[1]])])^(1/3) + 9*2^(1/3)*x^2*(32*x^12 + 40*x^6*Cosh[6*C[1]]
 - Cosh[12*C[1]] - 40*x^6*Sinh[6*C[1]] + Sinh[12*C[1]] + (Cosh[18*C[1]] - Sinh[1
8*C[1]])*Sqrt[((1 + 16*x^6)*Cosh[3*C[1]] + (-1 + 16*x^6)*Sinh[3*C[1]])^3*(Cosh[2
1*C[1]] + Sinh[21*C[1]])])^(1/3))/x^4])])/(18*x^2)}}

Maple raw input

dsolve(x*diff(y(x),x)^2+2*y(x)*diff(y(x),x)-x = 0, y(x))

Maple raw output

[x-(-y(x)+(x^2+y(x)^2)^(1/2))/x/((2*x^2+6*y(x)^2-6*y(x)*(x^2+y(x)^2)^(1/2))/x^2)
^(2/3)*_C1 = 0, _C1*(y(x)+(x^2+y(x)^2)^(1/2))/x/((3*y(x)*(x^2+y(x)^2)^(1/2)+x^2+
3*y(x)^2)/x^2)^(2/3)+x = 0]