4.42.3 \(a y(x)^2+x^3 y'(x) y''(x)=0\)

ODE
\[ a y(x)^2+x^3 y'(x) y''(x)=0 \] ODE Classification

[[_2nd_order, _with_linear_symmetries]]

Book solution method
TO DO

Mathematica
cpu = 1.2305 (sec), leaf count = 0 , could not solve

DSolve[a*y[x]^2 + x^3*Derivative[1][y][x]*Derivative[2][y][x] == 0, y[x], x]

Maple
cpu = 0.482 (sec), leaf count = 38

\[\left [y \left (x \right ) = {\mathrm e}^{\int _{}^{\ln \left (x \right )}\RootOf \left (-\left (\int _{}^{\textit {\_Z}}\frac {\textit {\_a}}{\textit {\_a}^{3}-\textit {\_a}^{2}+a}d \textit {\_a} \right )-\textit {\_b} +\textit {\_C1} \right )d \textit {\_b} +\textit {\_C2}}\right ]\] Mathematica raw input

DSolve[a*y[x]^2 + x^3*y'[x]*y''[x] == 0,y[x],x]

Mathematica raw output

DSolve[a*y[x]^2 + x^3*Derivative[1][y][x]*Derivative[2][y][x] == 0, y[x], x]

Maple raw input

dsolve(x^3*diff(y(x),x)*diff(diff(y(x),x),x)+a*y(x)^2 = 0, y(x))

Maple raw output

[y(x) = exp(Intat(RootOf(-Intat(_a/(_a^3-_a^2+a),_a = _Z)-_b+_C1),_b = ln(x))+_C
2)]