4.28.11 \(x^3 \left (e^{x^2}-k^2\right ) y(x)+x y''(x)-y'(x)=0\)

ODE
\[ x^3 \left (e^{x^2}-k^2\right ) y(x)+x y''(x)-y'(x)=0 \] ODE Classification

[[_2nd_order, _with_linear_symmetries]]

Book solution method
TO DO

Mathematica
cpu = 1.01895 (sec), leaf count = 46

\[\left \{\left \{y(x)\to c_1 \Gamma (1-k) J_{-k}\left (\sqrt {e^{x^2}}\right )+c_2 \Gamma (k+1) J_k\left (\sqrt {e^{x^2}}\right )\right \}\right \}\]

Maple
cpu = 0.412 (sec), leaf count = 25

\[\left [y \left (x \right ) = \textit {\_C1} \BesselJ \left (k , {\mathrm e}^{\frac {x^{2}}{2}}\right )+\textit {\_C2} \BesselY \left (k , {\mathrm e}^{\frac {x^{2}}{2}}\right )\right ]\] Mathematica raw input

DSolve[(E^x^2 - k^2)*x^3*y[x] - y'[x] + x*y''[x] == 0,y[x],x]

Mathematica raw output

{{y[x] -> BesselJ[-k, Sqrt[E^x^2]]*C[1]*Gamma[1 - k] + BesselJ[k, Sqrt[E^x^2]]*C
[2]*Gamma[1 + k]}}

Maple raw input

dsolve(x*diff(diff(y(x),x),x)-diff(y(x),x)+x^3*(exp(x^2)-k^2)*y(x) = 0, y(x))

Maple raw output

[y(x) = _C1*BesselJ(k,exp(1/2*x^2))+_C2*BesselY(k,exp(1/2*x^2))]