4.27.48 \(a k x^{k-1} y(x)+2 a x^k y'(x)+2 y''(x)=0\)

ODE
\[ a k x^{k-1} y(x)+2 a x^k y'(x)+2 y''(x)=0 \] ODE Classification

[[_2nd_order, _with_linear_symmetries]]

Book solution method
TO DO

Mathematica
cpu = 0.178684 (sec), leaf count = 120

\[\left \{\left \{y(x)\to c_2 \left (\frac {1}{k}+1\right )^{-\frac {1}{k+1}} k^{-\frac {1}{k+1}} a^{\frac {1}{k+1}} \left (x^k\right )^{\frac {1}{k}} \, _1F_1\left (\frac {k+2}{2 k+2};\frac {k+2}{k+1};-\frac {a \left (x^k\right )^{1+\frac {1}{k}}}{k+1}\right )+c_1 \, _1F_1\left (\frac {k}{2 k+2};\frac {k}{k+1};-\frac {a \left (x^k\right )^{1+\frac {1}{k}}}{k+1}\right )\right \}\right \}\]

Maple
cpu = 2.488 (sec), leaf count = 103

\[\left [y \left (x \right ) = \textit {\_C1} \,{\mathrm e}^{-\frac {a \,x^{k +1}}{2 k +2}} \sqrt {x}\, \BesselJ \left (\frac {1}{2 k +2}, \frac {\sqrt {-a^{2}}\, x^{k +1}}{2 k +2}\right )+\textit {\_C2} \,{\mathrm e}^{-\frac {a \,x^{k +1}}{2 k +2}} \sqrt {x}\, \BesselY \left (\frac {1}{2 k +2}, \frac {\sqrt {-a^{2}}\, x^{k +1}}{2 k +2}\right )\right ]\] Mathematica raw input

DSolve[a*k*x^(-1 + k)*y[x] + 2*a*x^k*y'[x] + 2*y''[x] == 0,y[x],x]

Mathematica raw output

{{y[x] -> C[1]*Hypergeometric1F1[k/(2 + 2*k), k/(1 + k), -((a*(x^k)^(1 + k^(-1))
)/(1 + k))] + (a^(1 + k)^(-1)*(x^k)^k^(-1)*C[2]*Hypergeometric1F1[(2 + k)/(2 + 2
*k), (2 + k)/(1 + k), -((a*(x^k)^(1 + k^(-1)))/(1 + k))])/((1 + k^(-1))^(1 + k)^
(-1)*k^(1 + k)^(-1))}}

Maple raw input

dsolve(2*diff(diff(y(x),x),x)+2*a*x^k*diff(y(x),x)+a*k*x^(k-1)*y(x) = 0, y(x))

Maple raw output

[y(x) = _C1*exp(-a*x^(k+1)/(2*k+2))*x^(1/2)*BesselJ(1/(2*k+2),(-a^2)^(1/2)*x^(k+
1)/(2*k+2))+_C2*exp(-a*x^(k+1)/(2*k+2))*x^(1/2)*BesselY(1/(2*k+2),(-a^2)^(1/2)*x
^(k+1)/(2*k+2))]