4.27.38 \(b y(x)+y''(x)-2 \tan (x) y'(x)=0\)

ODE
\[ b y(x)+y''(x)-2 \tan (x) y'(x)=0 \] ODE Classification

[[_2nd_order, _with_linear_symmetries]]

Book solution method
TO DO

Mathematica
cpu = 0.22155 (sec), leaf count = 54

\[\left \{\left \{y(x)\to \sec (x) \left (c_1 e^{-\sqrt {-b-1} x}+\frac {c_2 e^{\sqrt {-b-1} x}}{2 \sqrt {-b-1}}\right )\right \}\right \}\]

Maple
cpu = 0.109 (sec), leaf count = 37

\[\left [y \left (x \right ) = \frac {\textit {\_C1} \sinh \left (\sqrt {-1-b}\, x \right )}{\cos \left (x \right )}+\frac {\textit {\_C2} \cosh \left (\sqrt {-1-b}\, x \right )}{\cos \left (x \right )}\right ]\] Mathematica raw input

DSolve[b*y[x] - 2*Tan[x]*y'[x] + y''[x] == 0,y[x],x]

Mathematica raw output

{{y[x] -> (C[1]/E^(Sqrt[-1 - b]*x) + (E^(Sqrt[-1 - b]*x)*C[2])/(2*Sqrt[-1 - b]))
*Sec[x]}}

Maple raw input

dsolve(diff(diff(y(x),x),x)-2*diff(y(x),x)*tan(x)+b*y(x) = 0, y(x))

Maple raw output

[y(x) = _C1/cos(x)*sinh((-1-b)^(1/2)*x)+_C2/cos(x)*cosh((-1-b)^(1/2)*x)]