4.27.9 \(a x^k y'(x)+b x^{k-1} y(x)+y''(x)=0\)

ODE
\[ a x^k y'(x)+b x^{k-1} y(x)+y''(x)=0 \] ODE Classification

[[_2nd_order, _with_linear_symmetries]]

Book solution method
TO DO

Mathematica
cpu = 0.170418 (sec), leaf count = 120

\[\left \{\left \{y(x)\to c_2 \left (\frac {1}{k}+1\right )^{-\frac {1}{k+1}} k^{-\frac {1}{k+1}} a^{\frac {1}{k+1}} \left (x^k\right )^{\frac {1}{k}} \, _1F_1\left (\frac {a+b}{k a+a};\frac {k+2}{k+1};-\frac {a \left (x^k\right )^{1+\frac {1}{k}}}{k+1}\right )+c_1 \, _1F_1\left (\frac {b}{k a+a};\frac {k}{k+1};-\frac {a \left (x^k\right )^{1+\frac {1}{k}}}{k+1}\right )\right \}\right \}\]

Maple
cpu = 1.839 (sec), leaf count = 119

\[\left [y \left (x \right ) = \textit {\_C1} \,{\mathrm e}^{-\frac {x^{k +1} a}{k +1}} \KummerM \left (\frac {a \left (k +1\right )-b}{a \left (k +1\right )}, \frac {k +2}{k +1}, \frac {x^{k +1} a}{k +1}\right ) x +\textit {\_C2} \,{\mathrm e}^{-\frac {x^{k +1} a}{k +1}} \KummerU \left (\frac {a \left (k +1\right )-b}{a \left (k +1\right )}, \frac {k +2}{k +1}, \frac {x^{k +1} a}{k +1}\right ) x\right ]\] Mathematica raw input

DSolve[b*x^(-1 + k)*y[x] + a*x^k*y'[x] + y''[x] == 0,y[x],x]

Mathematica raw output

{{y[x] -> C[1]*Hypergeometric1F1[b/(a + a*k), k/(1 + k), -((a*(x^k)^(1 + k^(-1))
)/(1 + k))] + (a^(1 + k)^(-1)*(x^k)^k^(-1)*C[2]*Hypergeometric1F1[(a + b)/(a + a
*k), (2 + k)/(1 + k), -((a*(x^k)^(1 + k^(-1)))/(1 + k))])/((1 + k^(-1))^(1 + k)^
(-1)*k^(1 + k)^(-1))}}

Maple raw input

dsolve(diff(diff(y(x),x),x)+a*x^k*diff(y(x),x)+b*x^(k-1)*y(x) = 0, y(x))

Maple raw output

[y(x) = _C1*exp(-x^(k+1)/(k+1)*a)*KummerM((a*(k+1)-b)/a/(k+1),(k+2)/(k+1),x^(k+1
)/(k+1)*a)*x+_C2*exp(-x^(k+1)/(k+1)*a)*KummerU((a*(k+1)-b)/a/(k+1),(k+2)/(k+1),x
^(k+1)/(k+1)*a)*x]