##### 4.25.26 $$y''(x)-y(x) \left (a^2-b e^x\right )=0$$

ODE
$y''(x)-y(x) \left (a^2-b e^x\right )=0$ ODE Classiﬁcation

[[_2nd_order, _with_linear_symmetries]]

Book solution method
TO DO

Mathematica
cpu = 0.182384 (sec), leaf count = 60

$\left \{\left \{y(x)\to c_1 \Gamma (1-2 a) J_{-2 a}\left (2 \sqrt {b} \sqrt {e^x}\right )+c_2 \Gamma (2 a+1) J_{2 a}\left (2 \sqrt {b} \sqrt {e^x}\right )\right \}\right \}$

Maple
cpu = 0.454 (sec), leaf count = 35

$\left [y \left (x \right ) = \textit {\_C1} \BesselJ \left (2 a , 2 \sqrt {b}\, {\mathrm e}^{\frac {x}{2}}\right )+\textit {\_C2} \BesselY \left (2 a , 2 \sqrt {b}\, {\mathrm e}^{\frac {x}{2}}\right )\right ]$ Mathematica raw input

DSolve[-((a^2 - b*E^x)*y[x]) + y''[x] == 0,y[x],x]

Mathematica raw output

{{y[x] -> BesselJ[-2*a, 2*Sqrt[b]*Sqrt[E^x]]*C[1]*Gamma[1 - 2*a] + BesselJ[2*a,
2*Sqrt[b]*Sqrt[E^x]]*C[2]*Gamma[1 + 2*a]}}

Maple raw input

dsolve(diff(diff(y(x),x),x)-(a^2-b*exp(x))*y(x) = 0, y(x))

Maple raw output

[y(x) = _C1*BesselJ(2*a,2*b^(1/2)*exp(1/2*x))+_C2*BesselY(2*a,2*b^(1/2)*exp(1/2*
x))]