##### 4.25.10 $$\left (a-x^2\right ) y(x)+y''(x)=0$$

ODE
$\left (a-x^2\right ) y(x)+y''(x)=0$ ODE Classiﬁcation

[[_2nd_order, _with_linear_symmetries]]

Book solution method
TO DO

Mathematica
cpu = 0.152193 (sec), leaf count = 47

$\left \{\left \{y(x)\to c_2 D_{\frac {1}{2} (-a-1)}\left (i \sqrt {2} x\right )+c_1 D_{\frac {a-1}{2}}\left (\sqrt {2} x\right )\right \}\right \}$

Maple
cpu = 0.603 (sec), leaf count = 31

$\left [y \left (x \right ) = \frac {\textit {\_C1} \WhittakerM \left (\frac {a}{4}, \frac {1}{4}, x^{2}\right )}{\sqrt {x}}+\frac {\textit {\_C2} \WhittakerW \left (\frac {a}{4}, \frac {1}{4}, x^{2}\right )}{\sqrt {x}}\right ]$ Mathematica raw input

DSolve[(a - x^2)*y[x] + y''[x] == 0,y[x],x]

Mathematica raw output

{{y[x] -> C[2]*ParabolicCylinderD[(-1 - a)/2, I*Sqrt[2]*x] + C[1]*ParabolicCylin
derD[(-1 + a)/2, Sqrt[2]*x]}}

Maple raw input

dsolve(diff(diff(y(x),x),x)+(-x^2+a)*y(x) = 0, y(x))

Maple raw output

[y(x) = _C1/x^(1/2)*WhittakerM(1/4*a,1/4,x^2)+_C2/x^(1/2)*WhittakerW(1/4*a,1/4,x
^2)]