ODE
\[ a+x y'(x)^2-2 y(x) y'(x)=0 \] ODE Classification
[[_homogeneous, `class G`], _rational, _dAlembert]
Book solution method
No Missing Variables ODE, Solve for \(y\)
Mathematica ✓
cpu = 1.70487 (sec), leaf count = 9391
\[\left \{\left \{y(x)\to -\frac {1}{4} \sqrt {\frac {9 a^4 \left (\cosh \left (3 c_1\right )-\sinh \left (3 c_1\right )\right ) x^8}{\sqrt [3]{27 a^6 x^{12}-144 a^5 \cosh \left (3 c_1\right ) x^9-144 a^5 \sinh \left (3 c_1\right ) x^9+272 a^4 \cosh \left (6 c_1\right ) x^6+272 a^4 \sinh \left (6 c_1\right ) x^6-256 a^3 \cosh \left (9 c_1\right ) x^3-256 a^3 \sinh \left (9 c_1\right ) x^3+128 a^2 \cosh \left (12 c_1\right )+128 a^2 \sinh \left (12 c_1\right )+64 \sqrt {-a^4 \left (\left (a x^3-1\right ) \cosh \left (\frac {3 c_1}{2}\right )-\left (a x^3+1\right ) \sinh \left (\frac {3 c_1}{2}\right )\right ){}^3 \left (\left (a x^3-2\right ) \cosh \left (\frac {3 c_1}{2}\right )-\left (a x^3+2\right ) \sinh \left (\frac {3 c_1}{2}\right )\right ){}^2 \left (\cosh \left (\frac {33 c_1}{2}\right )+\sinh \left (\frac {33 c_1}{2}\right )\right )}}}-\frac {32 a^3 x^5}{\sqrt [3]{27 a^6 x^{12}-144 a^5 \cosh \left (3 c_1\right ) x^9-144 a^5 \sinh \left (3 c_1\right ) x^9+272 a^4 \cosh \left (6 c_1\right ) x^6+272 a^4 \sinh \left (6 c_1\right ) x^6-256 a^3 \cosh \left (9 c_1\right ) x^3-256 a^3 \sinh \left (9 c_1\right ) x^3+128 a^2 \cosh \left (12 c_1\right )+128 a^2 \sinh \left (12 c_1\right )+64 \sqrt {-a^4 \left (\left (a x^3-1\right ) \cosh \left (\frac {3 c_1}{2}\right )-\left (a x^3+1\right ) \sinh \left (\frac {3 c_1}{2}\right )\right ){}^3 \left (\left (a x^3-2\right ) \cosh \left (\frac {3 c_1}{2}\right )-\left (a x^3+2\right ) \sinh \left (\frac {3 c_1}{2}\right )\right ){}^2 \left (\cosh \left (\frac {33 c_1}{2}\right )+\sinh \left (\frac {33 c_1}{2}\right )\right )}}}+3 a^2 \cosh \left (3 c_1\right ) x^4-3 a^2 \sinh \left (3 c_1\right ) x^4+\frac {32 a^2 \left (\cosh \left (3 c_1\right )+\sinh \left (3 c_1\right )\right ) x^2}{\sqrt [3]{27 a^6 x^{12}-144 a^5 \cosh \left (3 c_1\right ) x^9-144 a^5 \sinh \left (3 c_1\right ) x^9+272 a^4 \cosh \left (6 c_1\right ) x^6+272 a^4 \sinh \left (6 c_1\right ) x^6-256 a^3 \cosh \left (9 c_1\right ) x^3-256 a^3 \sinh \left (9 c_1\right ) x^3+128 a^2 \cosh \left (12 c_1\right )+128 a^2 \sinh \left (12 c_1\right )+64 \sqrt {-a^4 \left (\left (a x^3-1\right ) \cosh \left (\frac {3 c_1}{2}\right )-\left (a x^3+1\right ) \sinh \left (\frac {3 c_1}{2}\right )\right ){}^3 \left (\left (a x^3-2\right ) \cosh \left (\frac {3 c_1}{2}\right )-\left (a x^3+2\right ) \sinh \left (\frac {3 c_1}{2}\right )\right ){}^2 \left (\cosh \left (\frac {33 c_1}{2}\right )+\sinh \left (\frac {33 c_1}{2}\right )\right )}}}+16 a x+\left (\cosh \left (3 c_1\right )-\sinh \left (3 c_1\right )\right ) \sqrt [3]{27 a^6 x^{12}-144 a^5 \cosh \left (3 c_1\right ) x^9-144 a^5 \sinh \left (3 c_1\right ) x^9+272 a^4 \cosh \left (6 c_1\right ) x^6+272 a^4 \sinh \left (6 c_1\right ) x^6-256 a^3 \cosh \left (9 c_1\right ) x^3-256 a^3 \sinh \left (9 c_1\right ) x^3+128 a^2 \cosh \left (12 c_1\right )+128 a^2 \sinh \left (12 c_1\right )+64 \sqrt {-a^4 \left (\left (a x^3-1\right ) \cosh \left (\frac {3 c_1}{2}\right )-\left (a x^3+1\right ) \sinh \left (\frac {3 c_1}{2}\right )\right ){}^3 \left (\left (a x^3-2\right ) \cosh \left (\frac {3 c_1}{2}\right )-\left (a x^3+2\right ) \sinh \left (\frac {3 c_1}{2}\right )\right ){}^2 \left (\cosh \left (\frac {33 c_1}{2}\right )+\sinh \left (\frac {33 c_1}{2}\right )\right )}}}\right \},\left \{y(x)\to \frac {1}{4} \sqrt {\frac {9 a^4 \left (\cosh \left (3 c_1\right )-\sinh \left (3 c_1\right )\right ) x^8}{\sqrt [3]{27 a^6 x^{12}-144 a^5 \cosh \left (3 c_1\right ) x^9-144 a^5 \sinh \left (3 c_1\right ) x^9+272 a^4 \cosh \left (6 c_1\right ) x^6+272 a^4 \sinh \left (6 c_1\right ) x^6-256 a^3 \cosh \left (9 c_1\right ) x^3-256 a^3 \sinh \left (9 c_1\right ) x^3+128 a^2 \cosh \left (12 c_1\right )+128 a^2 \sinh \left (12 c_1\right )+64 \sqrt {-a^4 \left (\left (a x^3-1\right ) \cosh \left (\frac {3 c_1}{2}\right )-\left (a x^3+1\right ) \sinh \left (\frac {3 c_1}{2}\right )\right ){}^3 \left (\left (a x^3-2\right ) \cosh \left (\frac {3 c_1}{2}\right )-\left (a x^3+2\right ) \sinh \left (\frac {3 c_1}{2}\right )\right ){}^2 \left (\cosh \left (\frac {33 c_1}{2}\right )+\sinh \left (\frac {33 c_1}{2}\right )\right )}}}-\frac {32 a^3 x^5}{\sqrt [3]{27 a^6 x^{12}-144 a^5 \cosh \left (3 c_1\right ) x^9-144 a^5 \sinh \left (3 c_1\right ) x^9+272 a^4 \cosh \left (6 c_1\right ) x^6+272 a^4 \sinh \left (6 c_1\right ) x^6-256 a^3 \cosh \left (9 c_1\right ) x^3-256 a^3 \sinh \left (9 c_1\right ) x^3+128 a^2 \cosh \left (12 c_1\right )+128 a^2 \sinh \left (12 c_1\right )+64 \sqrt {-a^4 \left (\left (a x^3-1\right ) \cosh \left (\frac {3 c_1}{2}\right )-\left (a x^3+1\right ) \sinh \left (\frac {3 c_1}{2}\right )\right ){}^3 \left (\left (a x^3-2\right ) \cosh \left (\frac {3 c_1}{2}\right )-\left (a x^3+2\right ) \sinh \left (\frac {3 c_1}{2}\right )\right ){}^2 \left (\cosh \left (\frac {33 c_1}{2}\right )+\sinh \left (\frac {33 c_1}{2}\right )\right )}}}+3 a^2 \cosh \left (3 c_1\right ) x^4-3 a^2 \sinh \left (3 c_1\right ) x^4+\frac {32 a^2 \left (\cosh \left (3 c_1\right )+\sinh \left (3 c_1\right )\right ) x^2}{\sqrt [3]{27 a^6 x^{12}-144 a^5 \cosh \left (3 c_1\right ) x^9-144 a^5 \sinh \left (3 c_1\right ) x^9+272 a^4 \cosh \left (6 c_1\right ) x^6+272 a^4 \sinh \left (6 c_1\right ) x^6-256 a^3 \cosh \left (9 c_1\right ) x^3-256 a^3 \sinh \left (9 c_1\right ) x^3+128 a^2 \cosh \left (12 c_1\right )+128 a^2 \sinh \left (12 c_1\right )+64 \sqrt {-a^4 \left (\left (a x^3-1\right ) \cosh \left (\frac {3 c_1}{2}\right )-\left (a x^3+1\right ) \sinh \left (\frac {3 c_1}{2}\right )\right ){}^3 \left (\left (a x^3-2\right ) \cosh \left (\frac {3 c_1}{2}\right )-\left (a x^3+2\right ) \sinh \left (\frac {3 c_1}{2}\right )\right ){}^2 \left (\cosh \left (\frac {33 c_1}{2}\right )+\sinh \left (\frac {33 c_1}{2}\right )\right )}}}+16 a x+\left (\cosh \left (3 c_1\right )-\sinh \left (3 c_1\right )\right ) \sqrt [3]{27 a^6 x^{12}-144 a^5 \cosh \left (3 c_1\right ) x^9-144 a^5 \sinh \left (3 c_1\right ) x^9+272 a^4 \cosh \left (6 c_1\right ) x^6+272 a^4 \sinh \left (6 c_1\right ) x^6-256 a^3 \cosh \left (9 c_1\right ) x^3-256 a^3 \sinh \left (9 c_1\right ) x^3+128 a^2 \cosh \left (12 c_1\right )+128 a^2 \sinh \left (12 c_1\right )+64 \sqrt {-a^4 \left (\left (a x^3-1\right ) \cosh \left (\frac {3 c_1}{2}\right )-\left (a x^3+1\right ) \sinh \left (\frac {3 c_1}{2}\right )\right ){}^3 \left (\left (a x^3-2\right ) \cosh \left (\frac {3 c_1}{2}\right )-\left (a x^3+2\right ) \sinh \left (\frac {3 c_1}{2}\right )\right ){}^2 \left (\cosh \left (\frac {33 c_1}{2}\right )+\sinh \left (\frac {33 c_1}{2}\right )\right )}}}\right \},\left \{y(x)\to -\frac {\sqrt {\frac {9 i \sqrt {3} a^4 \cosh \left (3 c_1\right ) x^8-9 a^4 \cosh \left (3 c_1\right ) x^8-9 i \sqrt {3} a^4 \sinh \left (3 c_1\right ) x^8+9 a^4 \sinh \left (3 c_1\right ) x^8-32 i \sqrt {3} a^3 x^5+32 a^3 x^5+6 a^2 \cosh \left (3 c_1\right ) \sqrt [3]{27 a^6 x^{12}-144 a^5 \cosh \left (3 c_1\right ) x^9-144 a^5 \sinh \left (3 c_1\right ) x^9+272 a^4 \cosh \left (6 c_1\right ) x^6+272 a^4 \sinh \left (6 c_1\right ) x^6-256 a^3 \cosh \left (9 c_1\right ) x^3-256 a^3 \sinh \left (9 c_1\right ) x^3+128 a^2 \cosh \left (12 c_1\right )+128 a^2 \sinh \left (12 c_1\right )+64 \sqrt {-a^4 \left (\left (a x^3-1\right ) \cosh \left (\frac {3 c_1}{2}\right )-\left (a x^3+1\right ) \sinh \left (\frac {3 c_1}{2}\right )\right ){}^3 \left (\left (a x^3-2\right ) \cosh \left (\frac {3 c_1}{2}\right )-\left (a x^3+2\right ) \sinh \left (\frac {3 c_1}{2}\right )\right ){}^2 \left (\cosh \left (\frac {33 c_1}{2}\right )+\sinh \left (\frac {33 c_1}{2}\right )\right )}} x^4-6 a^2 \sinh \left (3 c_1\right ) \sqrt [3]{27 a^6 x^{12}-144 a^5 \cosh \left (3 c_1\right ) x^9-144 a^5 \sinh \left (3 c_1\right ) x^9+272 a^4 \cosh \left (6 c_1\right ) x^6+272 a^4 \sinh \left (6 c_1\right ) x^6-256 a^3 \cosh \left (9 c_1\right ) x^3-256 a^3 \sinh \left (9 c_1\right ) x^3+128 a^2 \cosh \left (12 c_1\right )+128 a^2 \sinh \left (12 c_1\right )+64 \sqrt {-a^4 \left (\left (a x^3-1\right ) \cosh \left (\frac {3 c_1}{2}\right )-\left (a x^3+1\right ) \sinh \left (\frac {3 c_1}{2}\right )\right ){}^3 \left (\left (a x^3-2\right ) \cosh \left (\frac {3 c_1}{2}\right )-\left (a x^3+2\right ) \sinh \left (\frac {3 c_1}{2}\right )\right ){}^2 \left (\cosh \left (\frac {33 c_1}{2}\right )+\sinh \left (\frac {33 c_1}{2}\right )\right )}} x^4+32 i \sqrt {3} a^2 \cosh \left (3 c_1\right ) x^2-32 a^2 \cosh \left (3 c_1\right ) x^2+32 i \sqrt {3} a^2 \sinh \left (3 c_1\right ) x^2-32 a^2 \sinh \left (3 c_1\right ) x^2+32 a \sqrt [3]{27 a^6 x^{12}-144 a^5 \cosh \left (3 c_1\right ) x^9-144 a^5 \sinh \left (3 c_1\right ) x^9+272 a^4 \cosh \left (6 c_1\right ) x^6+272 a^4 \sinh \left (6 c_1\right ) x^6-256 a^3 \cosh \left (9 c_1\right ) x^3-256 a^3 \sinh \left (9 c_1\right ) x^3+128 a^2 \cosh \left (12 c_1\right )+128 a^2 \sinh \left (12 c_1\right )+64 \sqrt {-a^4 \left (\left (a x^3-1\right ) \cosh \left (\frac {3 c_1}{2}\right )-\left (a x^3+1\right ) \sinh \left (\frac {3 c_1}{2}\right )\right ){}^3 \left (\left (a x^3-2\right ) \cosh \left (\frac {3 c_1}{2}\right )-\left (a x^3+2\right ) \sinh \left (\frac {3 c_1}{2}\right )\right ){}^2 \left (\cosh \left (\frac {33 c_1}{2}\right )+\sinh \left (\frac {33 c_1}{2}\right )\right )}} x-i \sqrt {3} \cosh \left (3 c_1\right ) \left (27 a^6 x^{12}-144 a^5 \cosh \left (3 c_1\right ) x^9-144 a^5 \sinh \left (3 c_1\right ) x^9+272 a^4 \cosh \left (6 c_1\right ) x^6+272 a^4 \sinh \left (6 c_1\right ) x^6-256 a^3 \cosh \left (9 c_1\right ) x^3-256 a^3 \sinh \left (9 c_1\right ) x^3+128 a^2 \cosh \left (12 c_1\right )+128 a^2 \sinh \left (12 c_1\right )+64 \sqrt {-a^4 \left (\left (a x^3-1\right ) \cosh \left (\frac {3 c_1}{2}\right )-\left (a x^3+1\right ) \sinh \left (\frac {3 c_1}{2}\right )\right ){}^3 \left (\left (a x^3-2\right ) \cosh \left (\frac {3 c_1}{2}\right )-\left (a x^3+2\right ) \sinh \left (\frac {3 c_1}{2}\right )\right ){}^2 \left (\cosh \left (\frac {33 c_1}{2}\right )+\sinh \left (\frac {33 c_1}{2}\right )\right )}\right ){}^{2/3}-\cosh \left (3 c_1\right ) \left (27 a^6 x^{12}-144 a^5 \cosh \left (3 c_1\right ) x^9-144 a^5 \sinh \left (3 c_1\right ) x^9+272 a^4 \cosh \left (6 c_1\right ) x^6+272 a^4 \sinh \left (6 c_1\right ) x^6-256 a^3 \cosh \left (9 c_1\right ) x^3-256 a^3 \sinh \left (9 c_1\right ) x^3+128 a^2 \cosh \left (12 c_1\right )+128 a^2 \sinh \left (12 c_1\right )+64 \sqrt {-a^4 \left (\left (a x^3-1\right ) \cosh \left (\frac {3 c_1}{2}\right )-\left (a x^3+1\right ) \sinh \left (\frac {3 c_1}{2}\right )\right ){}^3 \left (\left (a x^3-2\right ) \cosh \left (\frac {3 c_1}{2}\right )-\left (a x^3+2\right ) \sinh \left (\frac {3 c_1}{2}\right )\right ){}^2 \left (\cosh \left (\frac {33 c_1}{2}\right )+\sinh \left (\frac {33 c_1}{2}\right )\right )}\right ){}^{2/3}+i \sqrt {3} \sinh \left (3 c_1\right ) \left (27 a^6 x^{12}-144 a^5 \cosh \left (3 c_1\right ) x^9-144 a^5 \sinh \left (3 c_1\right ) x^9+272 a^4 \cosh \left (6 c_1\right ) x^6+272 a^4 \sinh \left (6 c_1\right ) x^6-256 a^3 \cosh \left (9 c_1\right ) x^3-256 a^3 \sinh \left (9 c_1\right ) x^3+128 a^2 \cosh \left (12 c_1\right )+128 a^2 \sinh \left (12 c_1\right )+64 \sqrt {-a^4 \left (\left (a x^3-1\right ) \cosh \left (\frac {3 c_1}{2}\right )-\left (a x^3+1\right ) \sinh \left (\frac {3 c_1}{2}\right )\right ){}^3 \left (\left (a x^3-2\right ) \cosh \left (\frac {3 c_1}{2}\right )-\left (a x^3+2\right ) \sinh \left (\frac {3 c_1}{2}\right )\right ){}^2 \left (\cosh \left (\frac {33 c_1}{2}\right )+\sinh \left (\frac {33 c_1}{2}\right )\right )}\right ){}^{2/3}+\sinh \left (3 c_1\right ) \left (27 a^6 x^{12}-144 a^5 \cosh \left (3 c_1\right ) x^9-144 a^5 \sinh \left (3 c_1\right ) x^9+272 a^4 \cosh \left (6 c_1\right ) x^6+272 a^4 \sinh \left (6 c_1\right ) x^6-256 a^3 \cosh \left (9 c_1\right ) x^3-256 a^3 \sinh \left (9 c_1\right ) x^3+128 a^2 \cosh \left (12 c_1\right )+128 a^2 \sinh \left (12 c_1\right )+64 \sqrt {-a^4 \left (\left (a x^3-1\right ) \cosh \left (\frac {3 c_1}{2}\right )-\left (a x^3+1\right ) \sinh \left (\frac {3 c_1}{2}\right )\right ){}^3 \left (\left (a x^3-2\right ) \cosh \left (\frac {3 c_1}{2}\right )-\left (a x^3+2\right ) \sinh \left (\frac {3 c_1}{2}\right )\right ){}^2 \left (\cosh \left (\frac {33 c_1}{2}\right )+\sinh \left (\frac {33 c_1}{2}\right )\right )}\right ){}^{2/3}}{\sqrt [3]{27 a^6 x^{12}-144 a^5 \cosh \left (3 c_1\right ) x^9-144 a^5 \sinh \left (3 c_1\right ) x^9+272 a^4 \cosh \left (6 c_1\right ) x^6+272 a^4 \sinh \left (6 c_1\right ) x^6-256 a^3 \cosh \left (9 c_1\right ) x^3-256 a^3 \sinh \left (9 c_1\right ) x^3+128 a^2 \cosh \left (12 c_1\right )+128 a^2 \sinh \left (12 c_1\right )+64 \sqrt {-a^4 \left (\left (a x^3-1\right ) \cosh \left (\frac {3 c_1}{2}\right )-\left (a x^3+1\right ) \sinh \left (\frac {3 c_1}{2}\right )\right ){}^3 \left (\left (a x^3-2\right ) \cosh \left (\frac {3 c_1}{2}\right )-\left (a x^3+2\right ) \sinh \left (\frac {3 c_1}{2}\right )\right ){}^2 \left (\cosh \left (\frac {33 c_1}{2}\right )+\sinh \left (\frac {33 c_1}{2}\right )\right )}}}}}{4 \sqrt {2}}\right \},\left \{y(x)\to \frac {\sqrt {\frac {9 i \sqrt {3} a^4 \cosh \left (3 c_1\right ) x^8-9 a^4 \cosh \left (3 c_1\right ) x^8-9 i \sqrt {3} a^4 \sinh \left (3 c_1\right ) x^8+9 a^4 \sinh \left (3 c_1\right ) x^8-32 i \sqrt {3} a^3 x^5+32 a^3 x^5+6 a^2 \cosh \left (3 c_1\right ) \sqrt [3]{27 a^6 x^{12}-144 a^5 \cosh \left (3 c_1\right ) x^9-144 a^5 \sinh \left (3 c_1\right ) x^9+272 a^4 \cosh \left (6 c_1\right ) x^6+272 a^4 \sinh \left (6 c_1\right ) x^6-256 a^3 \cosh \left (9 c_1\right ) x^3-256 a^3 \sinh \left (9 c_1\right ) x^3+128 a^2 \cosh \left (12 c_1\right )+128 a^2 \sinh \left (12 c_1\right )+64 \sqrt {-a^4 \left (\left (a x^3-1\right ) \cosh \left (\frac {3 c_1}{2}\right )-\left (a x^3+1\right ) \sinh \left (\frac {3 c_1}{2}\right )\right ){}^3 \left (\left (a x^3-2\right ) \cosh \left (\frac {3 c_1}{2}\right )-\left (a x^3+2\right ) \sinh \left (\frac {3 c_1}{2}\right )\right ){}^2 \left (\cosh \left (\frac {33 c_1}{2}\right )+\sinh \left (\frac {33 c_1}{2}\right )\right )}} x^4-6 a^2 \sinh \left (3 c_1\right ) \sqrt [3]{27 a^6 x^{12}-144 a^5 \cosh \left (3 c_1\right ) x^9-144 a^5 \sinh \left (3 c_1\right ) x^9+272 a^4 \cosh \left (6 c_1\right ) x^6+272 a^4 \sinh \left (6 c_1\right ) x^6-256 a^3 \cosh \left (9 c_1\right ) x^3-256 a^3 \sinh \left (9 c_1\right ) x^3+128 a^2 \cosh \left (12 c_1\right )+128 a^2 \sinh \left (12 c_1\right )+64 \sqrt {-a^4 \left (\left (a x^3-1\right ) \cosh \left (\frac {3 c_1}{2}\right )-\left (a x^3+1\right ) \sinh \left (\frac {3 c_1}{2}\right )\right ){}^3 \left (\left (a x^3-2\right ) \cosh \left (\frac {3 c_1}{2}\right )-\left (a x^3+2\right ) \sinh \left (\frac {3 c_1}{2}\right )\right ){}^2 \left (\cosh \left (\frac {33 c_1}{2}\right )+\sinh \left (\frac {33 c_1}{2}\right )\right )}} x^4+32 i \sqrt {3} a^2 \cosh \left (3 c_1\right ) x^2-32 a^2 \cosh \left (3 c_1\right ) x^2+32 i \sqrt {3} a^2 \sinh \left (3 c_1\right ) x^2-32 a^2 \sinh \left (3 c_1\right ) x^2+32 a \sqrt [3]{27 a^6 x^{12}-144 a^5 \cosh \left (3 c_1\right ) x^9-144 a^5 \sinh \left (3 c_1\right ) x^9+272 a^4 \cosh \left (6 c_1\right ) x^6+272 a^4 \sinh \left (6 c_1\right ) x^6-256 a^3 \cosh \left (9 c_1\right ) x^3-256 a^3 \sinh \left (9 c_1\right ) x^3+128 a^2 \cosh \left (12 c_1\right )+128 a^2 \sinh \left (12 c_1\right )+64 \sqrt {-a^4 \left (\left (a x^3-1\right ) \cosh \left (\frac {3 c_1}{2}\right )-\left (a x^3+1\right ) \sinh \left (\frac {3 c_1}{2}\right )\right ){}^3 \left (\left (a x^3-2\right ) \cosh \left (\frac {3 c_1}{2}\right )-\left (a x^3+2\right ) \sinh \left (\frac {3 c_1}{2}\right )\right ){}^2 \left (\cosh \left (\frac {33 c_1}{2}\right )+\sinh \left (\frac {33 c_1}{2}\right )\right )}} x-i \sqrt {3} \cosh \left (3 c_1\right ) \left (27 a^6 x^{12}-144 a^5 \cosh \left (3 c_1\right ) x^9-144 a^5 \sinh \left (3 c_1\right ) x^9+272 a^4 \cosh \left (6 c_1\right ) x^6+272 a^4 \sinh \left (6 c_1\right ) x^6-256 a^3 \cosh \left (9 c_1\right ) x^3-256 a^3 \sinh \left (9 c_1\right ) x^3+128 a^2 \cosh \left (12 c_1\right )+128 a^2 \sinh \left (12 c_1\right )+64 \sqrt {-a^4 \left (\left (a x^3-1\right ) \cosh \left (\frac {3 c_1}{2}\right )-\left (a x^3+1\right ) \sinh \left (\frac {3 c_1}{2}\right )\right ){}^3 \left (\left (a x^3-2\right ) \cosh \left (\frac {3 c_1}{2}\right )-\left (a x^3+2\right ) \sinh \left (\frac {3 c_1}{2}\right )\right ){}^2 \left (\cosh \left (\frac {33 c_1}{2}\right )+\sinh \left (\frac {33 c_1}{2}\right )\right )}\right ){}^{2/3}-\cosh \left (3 c_1\right ) \left (27 a^6 x^{12}-144 a^5 \cosh \left (3 c_1\right ) x^9-144 a^5 \sinh \left (3 c_1\right ) x^9+272 a^4 \cosh \left (6 c_1\right ) x^6+272 a^4 \sinh \left (6 c_1\right ) x^6-256 a^3 \cosh \left (9 c_1\right ) x^3-256 a^3 \sinh \left (9 c_1\right ) x^3+128 a^2 \cosh \left (12 c_1\right )+128 a^2 \sinh \left (12 c_1\right )+64 \sqrt {-a^4 \left (\left (a x^3-1\right ) \cosh \left (\frac {3 c_1}{2}\right )-\left (a x^3+1\right ) \sinh \left (\frac {3 c_1}{2}\right )\right ){}^3 \left (\left (a x^3-2\right ) \cosh \left (\frac {3 c_1}{2}\right )-\left (a x^3+2\right ) \sinh \left (\frac {3 c_1}{2}\right )\right ){}^2 \left (\cosh \left (\frac {33 c_1}{2}\right )+\sinh \left (\frac {33 c_1}{2}\right )\right )}\right ){}^{2/3}+i \sqrt {3} \sinh \left (3 c_1\right ) \left (27 a^6 x^{12}-144 a^5 \cosh \left (3 c_1\right ) x^9-144 a^5 \sinh \left (3 c_1\right ) x^9+272 a^4 \cosh \left (6 c_1\right ) x^6+272 a^4 \sinh \left (6 c_1\right ) x^6-256 a^3 \cosh \left (9 c_1\right ) x^3-256 a^3 \sinh \left (9 c_1\right ) x^3+128 a^2 \cosh \left (12 c_1\right )+128 a^2 \sinh \left (12 c_1\right )+64 \sqrt {-a^4 \left (\left (a x^3-1\right ) \cosh \left (\frac {3 c_1}{2}\right )-\left (a x^3+1\right ) \sinh \left (\frac {3 c_1}{2}\right )\right ){}^3 \left (\left (a x^3-2\right ) \cosh \left (\frac {3 c_1}{2}\right )-\left (a x^3+2\right ) \sinh \left (\frac {3 c_1}{2}\right )\right ){}^2 \left (\cosh \left (\frac {33 c_1}{2}\right )+\sinh \left (\frac {33 c_1}{2}\right )\right )}\right ){}^{2/3}+\sinh \left (3 c_1\right ) \left (27 a^6 x^{12}-144 a^5 \cosh \left (3 c_1\right ) x^9-144 a^5 \sinh \left (3 c_1\right ) x^9+272 a^4 \cosh \left (6 c_1\right ) x^6+272 a^4 \sinh \left (6 c_1\right ) x^6-256 a^3 \cosh \left (9 c_1\right ) x^3-256 a^3 \sinh \left (9 c_1\right ) x^3+128 a^2 \cosh \left (12 c_1\right )+128 a^2 \sinh \left (12 c_1\right )+64 \sqrt {-a^4 \left (\left (a x^3-1\right ) \cosh \left (\frac {3 c_1}{2}\right )-\left (a x^3+1\right ) \sinh \left (\frac {3 c_1}{2}\right )\right ){}^3 \left (\left (a x^3-2\right ) \cosh \left (\frac {3 c_1}{2}\right )-\left (a x^3+2\right ) \sinh \left (\frac {3 c_1}{2}\right )\right ){}^2 \left (\cosh \left (\frac {33 c_1}{2}\right )+\sinh \left (\frac {33 c_1}{2}\right )\right )}\right ){}^{2/3}}{\sqrt [3]{27 a^6 x^{12}-144 a^5 \cosh \left (3 c_1\right ) x^9-144 a^5 \sinh \left (3 c_1\right ) x^9+272 a^4 \cosh \left (6 c_1\right ) x^6+272 a^4 \sinh \left (6 c_1\right ) x^6-256 a^3 \cosh \left (9 c_1\right ) x^3-256 a^3 \sinh \left (9 c_1\right ) x^3+128 a^2 \cosh \left (12 c_1\right )+128 a^2 \sinh \left (12 c_1\right )+64 \sqrt {-a^4 \left (\left (a x^3-1\right ) \cosh \left (\frac {3 c_1}{2}\right )-\left (a x^3+1\right ) \sinh \left (\frac {3 c_1}{2}\right )\right ){}^3 \left (\left (a x^3-2\right ) \cosh \left (\frac {3 c_1}{2}\right )-\left (a x^3+2\right ) \sinh \left (\frac {3 c_1}{2}\right )\right ){}^2 \left (\cosh \left (\frac {33 c_1}{2}\right )+\sinh \left (\frac {33 c_1}{2}\right )\right )}}}}}{4 \sqrt {2}}\right \},\left \{y(x)\to -\frac {\sqrt {\frac {-9 i \sqrt {3} a^4 \cosh \left (3 c_1\right ) x^8-9 a^4 \cosh \left (3 c_1\right ) x^8+9 i \sqrt {3} a^4 \sinh \left (3 c_1\right ) x^8+9 a^4 \sinh \left (3 c_1\right ) x^8+32 i \sqrt {3} a^3 x^5+32 a^3 x^5+6 a^2 \cosh \left (3 c_1\right ) \sqrt [3]{27 a^6 x^{12}-144 a^5 \cosh \left (3 c_1\right ) x^9-144 a^5 \sinh \left (3 c_1\right ) x^9+272 a^4 \cosh \left (6 c_1\right ) x^6+272 a^4 \sinh \left (6 c_1\right ) x^6-256 a^3 \cosh \left (9 c_1\right ) x^3-256 a^3 \sinh \left (9 c_1\right ) x^3+128 a^2 \cosh \left (12 c_1\right )+128 a^2 \sinh \left (12 c_1\right )+64 \sqrt {-a^4 \left (\left (a x^3-1\right ) \cosh \left (\frac {3 c_1}{2}\right )-\left (a x^3+1\right ) \sinh \left (\frac {3 c_1}{2}\right )\right ){}^3 \left (\left (a x^3-2\right ) \cosh \left (\frac {3 c_1}{2}\right )-\left (a x^3+2\right ) \sinh \left (\frac {3 c_1}{2}\right )\right ){}^2 \left (\cosh \left (\frac {33 c_1}{2}\right )+\sinh \left (\frac {33 c_1}{2}\right )\right )}} x^4-6 a^2 \sinh \left (3 c_1\right ) \sqrt [3]{27 a^6 x^{12}-144 a^5 \cosh \left (3 c_1\right ) x^9-144 a^5 \sinh \left (3 c_1\right ) x^9+272 a^4 \cosh \left (6 c_1\right ) x^6+272 a^4 \sinh \left (6 c_1\right ) x^6-256 a^3 \cosh \left (9 c_1\right ) x^3-256 a^3 \sinh \left (9 c_1\right ) x^3+128 a^2 \cosh \left (12 c_1\right )+128 a^2 \sinh \left (12 c_1\right )+64 \sqrt {-a^4 \left (\left (a x^3-1\right ) \cosh \left (\frac {3 c_1}{2}\right )-\left (a x^3+1\right ) \sinh \left (\frac {3 c_1}{2}\right )\right ){}^3 \left (\left (a x^3-2\right ) \cosh \left (\frac {3 c_1}{2}\right )-\left (a x^3+2\right ) \sinh \left (\frac {3 c_1}{2}\right )\right ){}^2 \left (\cosh \left (\frac {33 c_1}{2}\right )+\sinh \left (\frac {33 c_1}{2}\right )\right )}} x^4-32 i \sqrt {3} a^2 \cosh \left (3 c_1\right ) x^2-32 a^2 \cosh \left (3 c_1\right ) x^2-32 i \sqrt {3} a^2 \sinh \left (3 c_1\right ) x^2-32 a^2 \sinh \left (3 c_1\right ) x^2+32 a \sqrt [3]{27 a^6 x^{12}-144 a^5 \cosh \left (3 c_1\right ) x^9-144 a^5 \sinh \left (3 c_1\right ) x^9+272 a^4 \cosh \left (6 c_1\right ) x^6+272 a^4 \sinh \left (6 c_1\right ) x^6-256 a^3 \cosh \left (9 c_1\right ) x^3-256 a^3 \sinh \left (9 c_1\right ) x^3+128 a^2 \cosh \left (12 c_1\right )+128 a^2 \sinh \left (12 c_1\right )+64 \sqrt {-a^4 \left (\left (a x^3-1\right ) \cosh \left (\frac {3 c_1}{2}\right )-\left (a x^3+1\right ) \sinh \left (\frac {3 c_1}{2}\right )\right ){}^3 \left (\left (a x^3-2\right ) \cosh \left (\frac {3 c_1}{2}\right )-\left (a x^3+2\right ) \sinh \left (\frac {3 c_1}{2}\right )\right ){}^2 \left (\cosh \left (\frac {33 c_1}{2}\right )+\sinh \left (\frac {33 c_1}{2}\right )\right )}} x+i \sqrt {3} \cosh \left (3 c_1\right ) \left (27 a^6 x^{12}-144 a^5 \cosh \left (3 c_1\right ) x^9-144 a^5 \sinh \left (3 c_1\right ) x^9+272 a^4 \cosh \left (6 c_1\right ) x^6+272 a^4 \sinh \left (6 c_1\right ) x^6-256 a^3 \cosh \left (9 c_1\right ) x^3-256 a^3 \sinh \left (9 c_1\right ) x^3+128 a^2 \cosh \left (12 c_1\right )+128 a^2 \sinh \left (12 c_1\right )+64 \sqrt {-a^4 \left (\left (a x^3-1\right ) \cosh \left (\frac {3 c_1}{2}\right )-\left (a x^3+1\right ) \sinh \left (\frac {3 c_1}{2}\right )\right ){}^3 \left (\left (a x^3-2\right ) \cosh \left (\frac {3 c_1}{2}\right )-\left (a x^3+2\right ) \sinh \left (\frac {3 c_1}{2}\right )\right ){}^2 \left (\cosh \left (\frac {33 c_1}{2}\right )+\sinh \left (\frac {33 c_1}{2}\right )\right )}\right ){}^{2/3}-\cosh \left (3 c_1\right ) \left (27 a^6 x^{12}-144 a^5 \cosh \left (3 c_1\right ) x^9-144 a^5 \sinh \left (3 c_1\right ) x^9+272 a^4 \cosh \left (6 c_1\right ) x^6+272 a^4 \sinh \left (6 c_1\right ) x^6-256 a^3 \cosh \left (9 c_1\right ) x^3-256 a^3 \sinh \left (9 c_1\right ) x^3+128 a^2 \cosh \left (12 c_1\right )+128 a^2 \sinh \left (12 c_1\right )+64 \sqrt {-a^4 \left (\left (a x^3-1\right ) \cosh \left (\frac {3 c_1}{2}\right )-\left (a x^3+1\right ) \sinh \left (\frac {3 c_1}{2}\right )\right ){}^3 \left (\left (a x^3-2\right ) \cosh \left (\frac {3 c_1}{2}\right )-\left (a x^3+2\right ) \sinh \left (\frac {3 c_1}{2}\right )\right ){}^2 \left (\cosh \left (\frac {33 c_1}{2}\right )+\sinh \left (\frac {33 c_1}{2}\right )\right )}\right ){}^{2/3}-i \sqrt {3} \sinh \left (3 c_1\right ) \left (27 a^6 x^{12}-144 a^5 \cosh \left (3 c_1\right ) x^9-144 a^5 \sinh \left (3 c_1\right ) x^9+272 a^4 \cosh \left (6 c_1\right ) x^6+272 a^4 \sinh \left (6 c_1\right ) x^6-256 a^3 \cosh \left (9 c_1\right ) x^3-256 a^3 \sinh \left (9 c_1\right ) x^3+128 a^2 \cosh \left (12 c_1\right )+128 a^2 \sinh \left (12 c_1\right )+64 \sqrt {-a^4 \left (\left (a x^3-1\right ) \cosh \left (\frac {3 c_1}{2}\right )-\left (a x^3+1\right ) \sinh \left (\frac {3 c_1}{2}\right )\right ){}^3 \left (\left (a x^3-2\right ) \cosh \left (\frac {3 c_1}{2}\right )-\left (a x^3+2\right ) \sinh \left (\frac {3 c_1}{2}\right )\right ){}^2 \left (\cosh \left (\frac {33 c_1}{2}\right )+\sinh \left (\frac {33 c_1}{2}\right )\right )}\right ){}^{2/3}+\sinh \left (3 c_1\right ) \left (27 a^6 x^{12}-144 a^5 \cosh \left (3 c_1\right ) x^9-144 a^5 \sinh \left (3 c_1\right ) x^9+272 a^4 \cosh \left (6 c_1\right ) x^6+272 a^4 \sinh \left (6 c_1\right ) x^6-256 a^3 \cosh \left (9 c_1\right ) x^3-256 a^3 \sinh \left (9 c_1\right ) x^3+128 a^2 \cosh \left (12 c_1\right )+128 a^2 \sinh \left (12 c_1\right )+64 \sqrt {-a^4 \left (\left (a x^3-1\right ) \cosh \left (\frac {3 c_1}{2}\right )-\left (a x^3+1\right ) \sinh \left (\frac {3 c_1}{2}\right )\right ){}^3 \left (\left (a x^3-2\right ) \cosh \left (\frac {3 c_1}{2}\right )-\left (a x^3+2\right ) \sinh \left (\frac {3 c_1}{2}\right )\right ){}^2 \left (\cosh \left (\frac {33 c_1}{2}\right )+\sinh \left (\frac {33 c_1}{2}\right )\right )}\right ){}^{2/3}}{\sqrt [3]{27 a^6 x^{12}-144 a^5 \cosh \left (3 c_1\right ) x^9-144 a^5 \sinh \left (3 c_1\right ) x^9+272 a^4 \cosh \left (6 c_1\right ) x^6+272 a^4 \sinh \left (6 c_1\right ) x^6-256 a^3 \cosh \left (9 c_1\right ) x^3-256 a^3 \sinh \left (9 c_1\right ) x^3+128 a^2 \cosh \left (12 c_1\right )+128 a^2 \sinh \left (12 c_1\right )+64 \sqrt {-a^4 \left (\left (a x^3-1\right ) \cosh \left (\frac {3 c_1}{2}\right )-\left (a x^3+1\right ) \sinh \left (\frac {3 c_1}{2}\right )\right ){}^3 \left (\left (a x^3-2\right ) \cosh \left (\frac {3 c_1}{2}\right )-\left (a x^3+2\right ) \sinh \left (\frac {3 c_1}{2}\right )\right ){}^2 \left (\cosh \left (\frac {33 c_1}{2}\right )+\sinh \left (\frac {33 c_1}{2}\right )\right )}}}}}{4 \sqrt {2}}\right \},\left \{y(x)\to \frac {\sqrt {\frac {-9 i \sqrt {3} a^4 \cosh \left (3 c_1\right ) x^8-9 a^4 \cosh \left (3 c_1\right ) x^8+9 i \sqrt {3} a^4 \sinh \left (3 c_1\right ) x^8+9 a^4 \sinh \left (3 c_1\right ) x^8+32 i \sqrt {3} a^3 x^5+32 a^3 x^5+6 a^2 \cosh \left (3 c_1\right ) \sqrt [3]{27 a^6 x^{12}-144 a^5 \cosh \left (3 c_1\right ) x^9-144 a^5 \sinh \left (3 c_1\right ) x^9+272 a^4 \cosh \left (6 c_1\right ) x^6+272 a^4 \sinh \left (6 c_1\right ) x^6-256 a^3 \cosh \left (9 c_1\right ) x^3-256 a^3 \sinh \left (9 c_1\right ) x^3+128 a^2 \cosh \left (12 c_1\right )+128 a^2 \sinh \left (12 c_1\right )+64 \sqrt {-a^4 \left (\left (a x^3-1\right ) \cosh \left (\frac {3 c_1}{2}\right )-\left (a x^3+1\right ) \sinh \left (\frac {3 c_1}{2}\right )\right ){}^3 \left (\left (a x^3-2\right ) \cosh \left (\frac {3 c_1}{2}\right )-\left (a x^3+2\right ) \sinh \left (\frac {3 c_1}{2}\right )\right ){}^2 \left (\cosh \left (\frac {33 c_1}{2}\right )+\sinh \left (\frac {33 c_1}{2}\right )\right )}} x^4-6 a^2 \sinh \left (3 c_1\right ) \sqrt [3]{27 a^6 x^{12}-144 a^5 \cosh \left (3 c_1\right ) x^9-144 a^5 \sinh \left (3 c_1\right ) x^9+272 a^4 \cosh \left (6 c_1\right ) x^6+272 a^4 \sinh \left (6 c_1\right ) x^6-256 a^3 \cosh \left (9 c_1\right ) x^3-256 a^3 \sinh \left (9 c_1\right ) x^3+128 a^2 \cosh \left (12 c_1\right )+128 a^2 \sinh \left (12 c_1\right )+64 \sqrt {-a^4 \left (\left (a x^3-1\right ) \cosh \left (\frac {3 c_1}{2}\right )-\left (a x^3+1\right ) \sinh \left (\frac {3 c_1}{2}\right )\right ){}^3 \left (\left (a x^3-2\right ) \cosh \left (\frac {3 c_1}{2}\right )-\left (a x^3+2\right ) \sinh \left (\frac {3 c_1}{2}\right )\right ){}^2 \left (\cosh \left (\frac {33 c_1}{2}\right )+\sinh \left (\frac {33 c_1}{2}\right )\right )}} x^4-32 i \sqrt {3} a^2 \cosh \left (3 c_1\right ) x^2-32 a^2 \cosh \left (3 c_1\right ) x^2-32 i \sqrt {3} a^2 \sinh \left (3 c_1\right ) x^2-32 a^2 \sinh \left (3 c_1\right ) x^2+32 a \sqrt [3]{27 a^6 x^{12}-144 a^5 \cosh \left (3 c_1\right ) x^9-144 a^5 \sinh \left (3 c_1\right ) x^9+272 a^4 \cosh \left (6 c_1\right ) x^6+272 a^4 \sinh \left (6 c_1\right ) x^6-256 a^3 \cosh \left (9 c_1\right ) x^3-256 a^3 \sinh \left (9 c_1\right ) x^3+128 a^2 \cosh \left (12 c_1\right )+128 a^2 \sinh \left (12 c_1\right )+64 \sqrt {-a^4 \left (\left (a x^3-1\right ) \cosh \left (\frac {3 c_1}{2}\right )-\left (a x^3+1\right ) \sinh \left (\frac {3 c_1}{2}\right )\right ){}^3 \left (\left (a x^3-2\right ) \cosh \left (\frac {3 c_1}{2}\right )-\left (a x^3+2\right ) \sinh \left (\frac {3 c_1}{2}\right )\right ){}^2 \left (\cosh \left (\frac {33 c_1}{2}\right )+\sinh \left (\frac {33 c_1}{2}\right )\right )}} x+i \sqrt {3} \cosh \left (3 c_1\right ) \left (27 a^6 x^{12}-144 a^5 \cosh \left (3 c_1\right ) x^9-144 a^5 \sinh \left (3 c_1\right ) x^9+272 a^4 \cosh \left (6 c_1\right ) x^6+272 a^4 \sinh \left (6 c_1\right ) x^6-256 a^3 \cosh \left (9 c_1\right ) x^3-256 a^3 \sinh \left (9 c_1\right ) x^3+128 a^2 \cosh \left (12 c_1\right )+128 a^2 \sinh \left (12 c_1\right )+64 \sqrt {-a^4 \left (\left (a x^3-1\right ) \cosh \left (\frac {3 c_1}{2}\right )-\left (a x^3+1\right ) \sinh \left (\frac {3 c_1}{2}\right )\right ){}^3 \left (\left (a x^3-2\right ) \cosh \left (\frac {3 c_1}{2}\right )-\left (a x^3+2\right ) \sinh \left (\frac {3 c_1}{2}\right )\right ){}^2 \left (\cosh \left (\frac {33 c_1}{2}\right )+\sinh \left (\frac {33 c_1}{2}\right )\right )}\right ){}^{2/3}-\cosh \left (3 c_1\right ) \left (27 a^6 x^{12}-144 a^5 \cosh \left (3 c_1\right ) x^9-144 a^5 \sinh \left (3 c_1\right ) x^9+272 a^4 \cosh \left (6 c_1\right ) x^6+272 a^4 \sinh \left (6 c_1\right ) x^6-256 a^3 \cosh \left (9 c_1\right ) x^3-256 a^3 \sinh \left (9 c_1\right ) x^3+128 a^2 \cosh \left (12 c_1\right )+128 a^2 \sinh \left (12 c_1\right )+64 \sqrt {-a^4 \left (\left (a x^3-1\right ) \cosh \left (\frac {3 c_1}{2}\right )-\left (a x^3+1\right ) \sinh \left (\frac {3 c_1}{2}\right )\right ){}^3 \left (\left (a x^3-2\right ) \cosh \left (\frac {3 c_1}{2}\right )-\left (a x^3+2\right ) \sinh \left (\frac {3 c_1}{2}\right )\right ){}^2 \left (\cosh \left (\frac {33 c_1}{2}\right )+\sinh \left (\frac {33 c_1}{2}\right )\right )}\right ){}^{2/3}-i \sqrt {3} \sinh \left (3 c_1\right ) \left (27 a^6 x^{12}-144 a^5 \cosh \left (3 c_1\right ) x^9-144 a^5 \sinh \left (3 c_1\right ) x^9+272 a^4 \cosh \left (6 c_1\right ) x^6+272 a^4 \sinh \left (6 c_1\right ) x^6-256 a^3 \cosh \left (9 c_1\right ) x^3-256 a^3 \sinh \left (9 c_1\right ) x^3+128 a^2 \cosh \left (12 c_1\right )+128 a^2 \sinh \left (12 c_1\right )+64 \sqrt {-a^4 \left (\left (a x^3-1\right ) \cosh \left (\frac {3 c_1}{2}\right )-\left (a x^3+1\right ) \sinh \left (\frac {3 c_1}{2}\right )\right ){}^3 \left (\left (a x^3-2\right ) \cosh \left (\frac {3 c_1}{2}\right )-\left (a x^3+2\right ) \sinh \left (\frac {3 c_1}{2}\right )\right ){}^2 \left (\cosh \left (\frac {33 c_1}{2}\right )+\sinh \left (\frac {33 c_1}{2}\right )\right )}\right ){}^{2/3}+\sinh \left (3 c_1\right ) \left (27 a^6 x^{12}-144 a^5 \cosh \left (3 c_1\right ) x^9-144 a^5 \sinh \left (3 c_1\right ) x^9+272 a^4 \cosh \left (6 c_1\right ) x^6+272 a^4 \sinh \left (6 c_1\right ) x^6-256 a^3 \cosh \left (9 c_1\right ) x^3-256 a^3 \sinh \left (9 c_1\right ) x^3+128 a^2 \cosh \left (12 c_1\right )+128 a^2 \sinh \left (12 c_1\right )+64 \sqrt {-a^4 \left (\left (a x^3-1\right ) \cosh \left (\frac {3 c_1}{2}\right )-\left (a x^3+1\right ) \sinh \left (\frac {3 c_1}{2}\right )\right ){}^3 \left (\left (a x^3-2\right ) \cosh \left (\frac {3 c_1}{2}\right )-\left (a x^3+2\right ) \sinh \left (\frac {3 c_1}{2}\right )\right ){}^2 \left (\cosh \left (\frac {33 c_1}{2}\right )+\sinh \left (\frac {33 c_1}{2}\right )\right )}\right ){}^{2/3}}{\sqrt [3]{27 a^6 x^{12}-144 a^5 \cosh \left (3 c_1\right ) x^9-144 a^5 \sinh \left (3 c_1\right ) x^9+272 a^4 \cosh \left (6 c_1\right ) x^6+272 a^4 \sinh \left (6 c_1\right ) x^6-256 a^3 \cosh \left (9 c_1\right ) x^3-256 a^3 \sinh \left (9 c_1\right ) x^3+128 a^2 \cosh \left (12 c_1\right )+128 a^2 \sinh \left (12 c_1\right )+64 \sqrt {-a^4 \left (\left (a x^3-1\right ) \cosh \left (\frac {3 c_1}{2}\right )-\left (a x^3+1\right ) \sinh \left (\frac {3 c_1}{2}\right )\right ){}^3 \left (\left (a x^3-2\right ) \cosh \left (\frac {3 c_1}{2}\right )-\left (a x^3+2\right ) \sinh \left (\frac {3 c_1}{2}\right )\right ){}^2 \left (\cosh \left (\frac {33 c_1}{2}\right )+\sinh \left (\frac {33 c_1}{2}\right )\right )}}}}}{4 \sqrt {2}}\right \}\right \}\]
Maple ✓
cpu = 0.017 (sec), leaf count = 33
\[ \left \{ [x \left ( {\it \_T} \right ) ={\it \_T}\, \left ( {\frac {a}{3\,{{\it \_T}}^{3}}}+{\it \_C1} \right ) ,y \left ( {\it \_T} \right ) ={\frac {3\,{\it \_C1}\,{{\it \_T}}^{3}+4\,a}{6\,{\it \_T}}}] \right \} \] Mathematica raw input
DSolve[a - 2*y[x]*y'[x] + x*y'[x]^2 == 0,y[x],x]
Mathematica raw output
{{y[x] -> -Sqrt[16*a*x + 3*a^2*x^4*Cosh[3*C[1]] - 3*a^2*x^4*Sinh[3*C[1]] - (32*a^3*x^5)/(27*a^6*x^12 - 144*a^5*x^9*Cosh[3*C[1]] + 272*a^4*x^6*Cosh[6*C[1]] - 256*a^3*x^3*Cosh[9*C[1]] + 128*a^2*Cosh[12*C[1]] - 144*a^5*x^9*Sinh[3*C[1]] + 272*a^4*x^6*Sinh[6*C[1]] - 256*a^3*x^3*Sinh[9*C[1]] + 128*a^2*Sinh[12*C[1]] + 64*Sqrt[-(a^4*((-1 + a*x^3)*Cosh[(3*C[1])/2] - (1 + a*x^3)*Sinh[(3*C[1])/2])^3*((-2 + a*x^3)*Cosh[(3*C[1])/2] - (2 + a*x^3)*Sinh[(3*C[1])/2])^2*(Cosh[(33*C[1])/2] + Sinh[(33*C[1])/2]))])^(1/3) + (9*a^4*x^8*(Cosh[3*C[1]] - Sinh[3*C[1]]))/(27*a^6*x^12 - 144*a^5*x^9*Cosh[3*C[1]] + 272*a^4*x^6*Cosh[6*C[1]] - 256*a^3*x^3*Cosh[9*C[1]] + 128*a^2*Cosh[12*C[1]] - 144*a^5*x^9*Sinh[3*C[1]] + 272*a^4*x^6*Sinh[6*C[1]] - 256*a^3*x^3*Sinh[9*C[1]] + 128*a^2*Sinh[12*C[1]] + 64*Sqrt[-(a^4*((-1 + a*x^3)*Cosh[(3*C[1])/2] - (1 + a*x^3)*Sinh[(3*C[1])/2])^3*((-2 + a*x^3)*Cosh[(3*C[1])/2] - (2 + a*x^3)*Sinh[(3*C[1])/2])^2*(Cosh[(33*C[1])/2] + Sinh[(33*C[1])/2]))])^(1/3) + (32*a^2*x^2*(Cosh[3*C[1]] + Sinh[3*C[1]]))/(27*a^6*x^12 - 144*a^5*x^9*Cosh[3*C[1]] + 272*a^4*x^6*Cosh[6*C[1]] - 256*a^3*x^3*Cosh[9*C[1]] + 128*a^2*Cosh[12*C[1]] - 144*a^5*x^9*Sinh[3*C[1]] + 272*a^4*x^6*Sinh[6*C[1]] - 256*a^3*x^3*Sinh[9*C[1]] + 128*a^2*Sinh[12*C[1]] + 64*Sqrt[-(a^4*((-1 + a*x^3)*Cosh[(3*C[1])/2] - (1 + a*x^3)*Sinh[(3*C[1])/2])^3*((-2 + a*x^3)*Cosh[(3*C[1])/2] - (2 + a*x^3)*Sinh[(3*C[1])/2])^2*(Cosh[(33*C[1])/2] + Sinh[(33*C[1])/2]))])^(1/3) + (Cosh[3*C[1]] - Sinh[3*C[1]])*(27*a^6*x^12 - 144*a^5*x^9*Cosh[3*C[1]] + 272*a^4*x^6*Cosh[6*C[1]] - 256*a^3*x^3*Cosh[9*C[1]] + 128*a^2*Cosh[12*C[1]] - 144*a^5*x^9*Sinh[3*C[1]] + 272*a^4*x^6*Sinh[6*C[1]] - 256*a^3*x^3*Sinh[9*C[1]] + 128*a^2*Sinh[12*C[1]] + 64*Sqrt[-(a^4*((-1 + a*x^3)*Cosh[(3*C[1])/2] - (1 + a*x^3)*Sinh[(3*C[1])/2])^3*((-2 + a*x^3)*Cosh[(3*C[1])/2] - (2 + a*x^3)*Sinh[(3*C[1])/2])^2*(Cosh[(33*C[1])/2] + Sinh[(33*C[1])/2]))])^(1/3)]/4}, {y[x] -> Sqrt[16*a*x + 3*a^2*x^4*Cosh[3*C[1]] - 3*a^2*x^4*Sinh[3*C[1]] - (32*a^3*x^5)/(27*a^6*x^12 - 144*a^5*x^9*Cosh[3*C[1]] + 272*a^4*x^6*Cosh[6*C[1]] - 256*a^3*x^3*Cosh[9*C[1]] + 128*a^2*Cosh[12*C[1]] - 144*a^5*x^9*Sinh[3*C[1]] + 272*a^4*x^6*Sinh[6*C[1]] - 256*a^3*x^3*Sinh[9*C[1]] + 128*a^2*Sinh[12*C[1]] + 64*Sqrt[-(a^4*((-1 + a*x^3)*Cosh[(3*C[1])/2] - (1 + a*x^3)*Sinh[(3*C[1])/2])^3*((-2 + a*x^3)*Cosh[(3*C[1])/2] - (2 + a*x^3)*Sinh[(3*C[1])/2])^2*(Cosh[(33*C[1])/2] + Sinh[(33*C[1])/2]))])^(1/3) + (9*a^4*x^8*(Cosh[3*C[1]] - Sinh[3*C[1]]))/(27*a^6*x^12 - 144*a^5*x^9*Cosh[3*C[1]] + 272*a^4*x^6*Cosh[6*C[1]] - 256*a^3*x^3*Cosh[9*C[1]] + 128*a^2*Cosh[12*C[1]] - 144*a^5*x^9*Sinh[3*C[1]] + 272*a^4*x^6*Sinh[6*C[1]] - 256*a^3*x^3*Sinh[9*C[1]] + 128*a^2*Sinh[12*C[1]] + 64*Sqrt[-(a^4*((-1 + a*x^3)*Cosh[(3*C[1])/2] - (1 + a*x^3)*Sinh[(3*C[1])/2])^3*((-2 + a*x^3)*Cosh[(3*C[1])/2] - (2 + a*x^3)*Sinh[(3*C[1])/2])^2*(Cosh[(33*C[1])/2] + Sinh[(33*C[1])/2]))])^(1/3) + (32*a^2*x^2*(Cosh[3*C[1]] + Sinh[3*C[1]]))/(27*a^6*x^12 - 144*a^5*x^9*Cosh[3*C[1]] + 272*a^4*x^6*Cosh[6*C[1]] - 256*a^3*x^3*Cosh[9*C[1]] + 128*a^2*Cosh[12*C[1]] - 144*a^5*x^9*Sinh[3*C[1]] + 272*a^4*x^6*Sinh[6*C[1]] - 256*a^3*x^3*Sinh[9*C[1]] + 128*a^2*Sinh[12*C[1]] + 64*Sqrt[-(a^4*((-1 + a*x^3)*Cosh[(3*C[1])/2] - (1 + a*x^3)*Sinh[(3*C[1])/2])^3*((-2 + a*x^3)*Cosh[(3*C[1])/2] - (2 + a*x^3)*Sinh[(3*C[1])/2])^2*(Cosh[(33*C[1])/2] + Sinh[(33*C[1])/2]))])^(1/3) + (Cosh[3*C[1]] - Sinh[3*C[1]])*(27*a^6*x^12 - 144*a^5*x^9*Cosh[3*C[1]] + 272*a^4*x^6*Cosh[6*C[1]] - 256*a^3*x^3*Cosh[9*C[1]] + 128*a^2*Cosh[12*C[1]] - 144*a^5*x^9*Sinh[3*C[1]] + 272*a^4*x^6*Sinh[6*C[1]] - 256*a^3*x^3*Sinh[9*C[1]] + 128*a^2*Sinh[12*C[1]] + 64*Sqrt[-(a^4*((-1 + a*x^3)*Cosh[(3*C[1])/2] - (1 + a*x^3)*Sinh[(3*C[1])/2])^3*((-2 + a*x^3)*Cosh[(3*C[1])/2] - (2 + a*x^3)*Sinh[(3*C[1])/2])^2*(Cosh[(33*C[1])/2] + Sinh[(33*C[1])/2]))])^(1/3)]/4}, {y[x] -> -Sqrt[(32*a^3*x^5 - (32*I)*Sqrt[3]*a^3*x^5 - 32*a^2*x^2*Cosh[3*C[1]] + (32*I)*Sqrt[3]*a^2*x^2*Cosh[3*C[1]] - 9*a^4*x^8*Cosh[3*C[1]] + (9*I)*Sqrt[3]*a^4*x^8*Cosh[3*C[1]] - 32*a^2*x^2*Sinh[3*C[1]] + (32*I)*Sqrt[3]*a^2*x^2*Sinh[3*C[1]] + 9*a^4*x^8*Sinh[3*C[1]] - (9*I)*Sqrt[3]*a^4*x^8*Sinh[3*C[1]] + 32*a*x*(27*a^6*x^12 - 144*a^5*x^9*Cosh[3*C[1]] + 272*a^4*x^6*Cosh[6*C[1]] - 256*a^3*x^3*Cosh[9*C[1]] + 128*a^2*Cosh[12*C[1]] - 144*a^5*x^9*Sinh[3*C[1]] + 272*a^4*x^6*Sinh[6*C[1]] - 256*a^3*x^3*Sinh[9*C[1]] + 128*a^2*Sinh[12*C[1]] + 64*Sqrt[-(a^4*((-1 + a*x^3)*Cosh[(3*C[1])/2] - (1 + a*x^3)*Sinh[(3*C[1])/2])^3*((-2 + a*x^3)*Cosh[(3*C[1])/2] - (2 + a*x^3)*Sinh[(3*C[1])/2])^2*(Cosh[(33*C[1])/2] + Sinh[(33*C[1])/2]))])^(1/3) + 6*a^2*x^4*Cosh[3*C[1]]*(27*a^6*x^12 - 144*a^5*x^9*Cosh[3*C[1]] + 272*a^4*x^6*Cosh[6*C[1]] - 256*a^3*x^3*Cosh[9*C[1]] + 128*a^2*Cosh[12*C[1]] - 144*a^5*x^9*Sinh[3*C[1]] + 272*a^4*x^6*Sinh[6*C[1]] - 256*a^3*x^3*Sinh[9*C[1]] + 128*a^2*Sinh[12*C[1]] + 64*Sqrt[-(a^4*((-1 + a*x^3)*Cosh[(3*C[1])/2] - (1 + a*x^3)*Sinh[(3*C[1])/2])^3*((-2 + a*x^3)*Cosh[(3*C[1])/2] - (2 + a*x^3)*Sinh[(3*C[1])/2])^2*(Cosh[(33*C[1])/2] + Sinh[(33*C[1])/2]))])^(1/3) - 6*a^2*x^4*Sinh[3*C[1]]*(27*a^6*x^12 - 144*a^5*x^9*Cosh[3*C[1]] + 272*a^4*x^6*Cosh[6*C[1]] - 256*a^3*x^3*Cosh[9*C[1]] + 128*a^2*Cosh[12*C[1]] - 144*a^5*x^9*Sinh[3*C[1]] + 272*a^4*x^6*Sinh[6*C[1]] - 256*a^3*x^3*Sinh[9*C[1]] + 128*a^2*Sinh[12*C[1]] + 64*Sqrt[-(a^4*((-1 + a*x^3)*Cosh[(3*C[1])/2] - (1 + a*x^3)*Sinh[(3*C[1])/2])^3*((-2 + a*x^3)*Cosh[(3*C[1])/2] - (2 + a*x^3)*Sinh[(3*C[1])/2])^2*(Cosh[(33*C[1])/2] + Sinh[(33*C[1])/2]))])^(1/3) - Cosh[3*C[1]]*(27*a^6*x^12 - 144*a^5*x^9*Cosh[3*C[1]] + 272*a^4*x^6*Cosh[6*C[1]] - 256*a^3*x^3*Cosh[9*C[1]] + 128*a^2*Cosh[12*C[1]] - 144*a^5*x^9*Sinh[3*C[1]] + 272*a^4*x^6*Sinh[6*C[1]] - 256*a^3*x^3*Sinh[9*C[1]] + 128*a^2*Sinh[12*C[1]] + 64*Sqrt[-(a^4*((-1 + a*x^3)*Cosh[(3*C[1])/2] - (1 + a*x^3)*Sinh[(3*C[1])/2])^3*((-2 + a*x^3)*Cosh[(3*C[1])/2] - (2 + a*x^3)*Sinh[(3*C[1])/2])^2*(Cosh[(33*C[1])/2] + Sinh[(33*C[1])/2]))])^(2/3) - I*Sqrt[3]*Cosh[3*C[1]]*(27*a^6*x^12 - 144*a^5*x^9*Cosh[3*C[1]] + 272*a^4*x^6*Cosh[6*C[1]] - 256*a^3*x^3*Cosh[9*C[1]] + 128*a^2*Cosh[12*C[1]] - 144*a^5*x^9*Sinh[3*C[1]] + 272*a^4*x^6*Sinh[6*C[1]] - 256*a^3*x^3*Sinh[9*C[1]] + 128*a^2*Sinh[12*C[1]] + 64*Sqrt[-(a^4*((-1 + a*x^3)*Cosh[(3*C[1])/2] - (1 + a*x^3)*Sinh[(3*C[1])/2])^3*((-2 + a*x^3)*Cosh[(3*C[1])/2] - (2 + a*x^3)*Sinh[(3*C[1])/2])^2*(Cosh[(33*C[1])/2] + Sinh[(33*C[1])/2]))])^(2/3) + Sinh[3*C[1]]*(27*a^6*x^12 - 144*a^5*x^9*Cosh[3*C[1]] + 272*a^4*x^6*Cosh[6*C[1]] - 256*a^3*x^3*Cosh[9*C[1]] + 128*a^2*Cosh[12*C[1]] - 144*a^5*x^9*Sinh[3*C[1]] + 272*a^4*x^6*Sinh[6*C[1]] - 256*a^3*x^3*Sinh[9*C[1]] + 128*a^2*Sinh[12*C[1]] + 64*Sqrt[-(a^4*((-1 + a*x^3)*Cosh[(3*C[1])/2] - (1 + a*x^3)*Sinh[(3*C[1])/2])^3*((-2 + a*x^3)*Cosh[(3*C[1])/2] - (2 + a*x^3)*Sinh[(3*C[1])/2])^2*(Cosh[(33*C[1])/2] + Sinh[(33*C[1])/2]))])^(2/3) + I*Sqrt[3]*Sinh[3*C[1]]*(27*a^6*x^12 - 144*a^5*x^9*Cosh[3*C[1]] + 272*a^4*x^6*Cosh[6*C[1]] - 256*a^3*x^3*Cosh[9*C[1]] + 128*a^2*Cosh[12*C[1]] - 144*a^5*x^9*Sinh[3*C[1]] + 272*a^4*x^6*Sinh[6*C[1]] - 256*a^3*x^3*Sinh[9*C[1]] + 128*a^2*Sinh[12*C[1]] + 64*Sqrt[-(a^4*((-1 + a*x^3)*Cosh[(3*C[1])/2] - (1 + a*x^3)*Sinh[(3*C[1])/2])^3*((-2 + a*x^3)*Cosh[(3*C[1])/2] - (2 + a*x^3)*Sinh[(3*C[1])/2])^2*(Cosh[(33*C[1])/2] + Sinh[(33*C[1])/2]))])^(2/3))/(27*a^6*x^12 - 144*a^5*x^9*Cosh[3*C[1]] + 272*a^4*x^6*Cosh[6*C[1]] - 256*a^3*x^3*Cosh[9*C[1]] + 128*a^2*Cosh[12*C[1]] - 144*a^5*x^9*Sinh[3*C[1]] + 272*a^4*x^6*Sinh[6*C[1]] - 256*a^3*x^3*Sinh[9*C[1]] + 128*a^2*Sinh[12*C[1]] + 64*Sqrt[-(a^4*((-1 + a*x^3)*Cosh[(3*C[1])/2] - (1 + a*x^3)*Sinh[(3*C[1])/2])^3*((-2 + a*x^3)*Cosh[(3*C[1])/2] - (2 + a*x^3)*Sinh[(3*C[1])/2])^2*(Cosh[(33*C[1])/2] + Sinh[(33*C[1])/2]))])^(1/3)]/(4*Sqrt[2])}, {y[x] -> Sqrt[(32*a^3*x^5 - (32*I)*Sqrt[3]*a^3*x^5 - 32*a^2*x^2*Cosh[3*C[1]] + (32*I)*Sqrt[3]*a^2*x^2*Cosh[3*C[1]] - 9*a^4*x^8*Cosh[3*C[1]] + (9*I)*Sqrt[3]*a^4*x^8*Cosh[3*C[1]] - 32*a^2*x^2*Sinh[3*C[1]] + (32*I)*Sqrt[3]*a^2*x^2*Sinh[3*C[1]] + 9*a^4*x^8*Sinh[3*C[1]] - (9*I)*Sqrt[3]*a^4*x^8*Sinh[3*C[1]] + 32*a*x*(27*a^6*x^12 - 144*a^5*x^9*Cosh[3*C[1]] + 272*a^4*x^6*Cosh[6*C[1]] - 256*a^3*x^3*Cosh[9*C[1]] + 128*a^2*Cosh[12*C[1]] - 144*a^5*x^9*Sinh[3*C[1]] + 272*a^4*x^6*Sinh[6*C[1]] - 256*a^3*x^3*Sinh[9*C[1]] + 128*a^2*Sinh[12*C[1]] + 64*Sqrt[-(a^4*((-1 + a*x^3)*Cosh[(3*C[1])/2] - (1 + a*x^3)*Sinh[(3*C[1])/2])^3*((-2 + a*x^3)*Cosh[(3*C[1])/2] - (2 + a*x^3)*Sinh[(3*C[1])/2])^2*(Cosh[(33*C[1])/2] + Sinh[(33*C[1])/2]))])^(1/3) + 6*a^2*x^4*Cosh[3*C[1]]*(27*a^6*x^12 - 144*a^5*x^9*Cosh[3*C[1]] + 272*a^4*x^6*Cosh[6*C[1]] - 256*a^3*x^3*Cosh[9*C[1]] + 128*a^2*Cosh[12*C[1]] - 144*a^5*x^9*Sinh[3*C[1]] + 272*a^4*x^6*Sinh[6*C[1]] - 256*a^3*x^3*Sinh[9*C[1]] + 128*a^2*Sinh[12*C[1]] + 64*Sqrt[-(a^4*((-1 + a*x^3)*Cosh[(3*C[1])/2] - (1 + a*x^3)*Sinh[(3*C[1])/2])^3*((-2 + a*x^3)*Cosh[(3*C[1])/2] - (2 + a*x^3)*Sinh[(3*C[1])/2])^2*(Cosh[(33*C[1])/2] + Sinh[(33*C[1])/2]))])^(1/3) - 6*a^2*x^4*Sinh[3*C[1]]*(27*a^6*x^12 - 144*a^5*x^9*Cosh[3*C[1]] + 272*a^4*x^6*Cosh[6*C[1]] - 256*a^3*x^3*Cosh[9*C[1]] + 128*a^2*Cosh[12*C[1]] - 144*a^5*x^9*Sinh[3*C[1]] + 272*a^4*x^6*Sinh[6*C[1]] - 256*a^3*x^3*Sinh[9*C[1]] + 128*a^2*Sinh[12*C[1]] + 64*Sqrt[-(a^4*((-1 + a*x^3)*Cosh[(3*C[1])/2] - (1 + a*x^3)*Sinh[(3*C[1])/2])^3*((-2 + a*x^3)*Cosh[(3*C[1])/2] - (2 + a*x^3)*Sinh[(3*C[1])/2])^2*(Cosh[(33*C[1])/2] + Sinh[(33*C[1])/2]))])^(1/3) - Cosh[3*C[1]]*(27*a^6*x^12 - 144*a^5*x^9*Cosh[3*C[1]] + 272*a^4*x^6*Cosh[6*C[1]] - 256*a^3*x^3*Cosh[9*C[1]] + 128*a^2*Cosh[12*C[1]] - 144*a^5*x^9*Sinh[3*C[1]] + 272*a^4*x^6*Sinh[6*C[1]] - 256*a^3*x^3*Sinh[9*C[1]] + 128*a^2*Sinh[12*C[1]] + 64*Sqrt[-(a^4*((-1 + a*x^3)*Cosh[(3*C[1])/2] - (1 + a*x^3)*Sinh[(3*C[1])/2])^3*((-2 + a*x^3)*Cosh[(3*C[1])/2] - (2 + a*x^3)*Sinh[(3*C[1])/2])^2*(Cosh[(33*C[1])/2] + Sinh[(33*C[1])/2]))])^(2/3) - I*Sqrt[3]*Cosh[3*C[1]]*(27*a^6*x^12 - 144*a^5*x^9*Cosh[3*C[1]] + 272*a^4*x^6*Cosh[6*C[1]] - 256*a^3*x^3*Cosh[9*C[1]] + 128*a^2*Cosh[12*C[1]] - 144*a^5*x^9*Sinh[3*C[1]] + 272*a^4*x^6*Sinh[6*C[1]] - 256*a^3*x^3*Sinh[9*C[1]] + 128*a^2*Sinh[12*C[1]] + 64*Sqrt[-(a^4*((-1 + a*x^3)*Cosh[(3*C[1])/2] - (1 + a*x^3)*Sinh[(3*C[1])/2])^3*((-2 + a*x^3)*Cosh[(3*C[1])/2] - (2 + a*x^3)*Sinh[(3*C[1])/2])^2*(Cosh[(33*C[1])/2] + Sinh[(33*C[1])/2]))])^(2/3) + Sinh[3*C[1]]*(27*a^6*x^12 - 144*a^5*x^9*Cosh[3*C[1]] + 272*a^4*x^6*Cosh[6*C[1]] - 256*a^3*x^3*Cosh[9*C[1]] + 128*a^2*Cosh[12*C[1]] - 144*a^5*x^9*Sinh[3*C[1]] + 272*a^4*x^6*Sinh[6*C[1]] - 256*a^3*x^3*Sinh[9*C[1]] + 128*a^2*Sinh[12*C[1]] + 64*Sqrt[-(a^4*((-1 + a*x^3)*Cosh[(3*C[1])/2] - (1 + a*x^3)*Sinh[(3*C[1])/2])^3*((-2 + a*x^3)*Cosh[(3*C[1])/2] - (2 + a*x^3)*Sinh[(3*C[1])/2])^2*(Cosh[(33*C[1])/2] + Sinh[(33*C[1])/2]))])^(2/3) + I*Sqrt[3]*Sinh[3*C[1]]*(27*a^6*x^12 - 144*a^5*x^9*Cosh[3*C[1]] + 272*a^4*x^6*Cosh[6*C[1]] - 256*a^3*x^3*Cosh[9*C[1]] + 128*a^2*Cosh[12*C[1]] - 144*a^5*x^9*Sinh[3*C[1]] + 272*a^4*x^6*Sinh[6*C[1]] - 256*a^3*x^3*Sinh[9*C[1]] + 128*a^2*Sinh[12*C[1]] + 64*Sqrt[-(a^4*((-1 + a*x^3)*Cosh[(3*C[1])/2] - (1 + a*x^3)*Sinh[(3*C[1])/2])^3*((-2 + a*x^3)*Cosh[(3*C[1])/2] - (2 + a*x^3)*Sinh[(3*C[1])/2])^2*(Cosh[(33*C[1])/2] + Sinh[(33*C[1])/2]))])^(2/3))/(27*a^6*x^12 - 144*a^5*x^9*Cosh[3*C[1]] + 272*a^4*x^6*Cosh[6*C[1]] - 256*a^3*x^3*Cosh[9*C[1]] + 128*a^2*Cosh[12*C[1]] - 144*a^5*x^9*Sinh[3*C[1]] + 272*a^4*x^6*Sinh[6*C[1]] - 256*a^3*x^3*Sinh[9*C[1]] + 128*a^2*Sinh[12*C[1]] + 64*Sqrt[-(a^4*((-1 + a*x^3)*Cosh[(3*C[1])/2] - (1 + a*x^3)*Sinh[(3*C[1])/2])^3*((-2 + a*x^3)*Cosh[(3*C[1])/2] - (2 + a*x^3)*Sinh[(3*C[1])/2])^2*(Cosh[(33*C[1])/2] + Sinh[(33*C[1])/2]))])^(1/3)]/(4*Sqrt[2])}, {y[x] -> -Sqrt[(32*a^3*x^5 + (32*I)*Sqrt[3]*a^3*x^5 - 32*a^2*x^2*Cosh[3*C[1]] - (32*I)*Sqrt[3]*a^2*x^2*Cosh[3*C[1]] - 9*a^4*x^8*Cosh[3*C[1]] - (9*I)*Sqrt[3]*a^4*x^8*Cosh[3*C[1]] - 32*a^2*x^2*Sinh[3*C[1]] - (32*I)*Sqrt[3]*a^2*x^2*Sinh[3*C[1]] + 9*a^4*x^8*Sinh[3*C[1]] + (9*I)*Sqrt[3]*a^4*x^8*Sinh[3*C[1]] + 32*a*x*(27*a^6*x^12 - 144*a^5*x^9*Cosh[3*C[1]] + 272*a^4*x^6*Cosh[6*C[1]] - 256*a^3*x^3*Cosh[9*C[1]] + 128*a^2*Cosh[12*C[1]] - 144*a^5*x^9*Sinh[3*C[1]] + 272*a^4*x^6*Sinh[6*C[1]] - 256*a^3*x^3*Sinh[9*C[1]] + 128*a^2*Sinh[12*C[1]] + 64*Sqrt[-(a^4*((-1 + a*x^3)*Cosh[(3*C[1])/2] - (1 + a*x^3)*Sinh[(3*C[1])/2])^3*((-2 + a*x^3)*Cosh[(3*C[1])/2] - (2 + a*x^3)*Sinh[(3*C[1])/2])^2*(Cosh[(33*C[1])/2] + Sinh[(33*C[1])/2]))])^(1/3) + 6*a^2*x^4*Cosh[3*C[1]]*(27*a^6*x^12 - 144*a^5*x^9*Cosh[3*C[1]] + 272*a^4*x^6*Cosh[6*C[1]] - 256*a^3*x^3*Cosh[9*C[1]] + 128*a^2*Cosh[12*C[1]] - 144*a^5*x^9*Sinh[3*C[1]] + 272*a^4*x^6*Sinh[6*C[1]] - 256*a^3*x^3*Sinh[9*C[1]] + 128*a^2*Sinh[12*C[1]] + 64*Sqrt[-(a^4*((-1 + a*x^3)*Cosh[(3*C[1])/2] - (1 + a*x^3)*Sinh[(3*C[1])/2])^3*((-2 + a*x^3)*Cosh[(3*C[1])/2] - (2 + a*x^3)*Sinh[(3*C[1])/2])^2*(Cosh[(33*C[1])/2] + Sinh[(33*C[1])/2]))])^(1/3) - 6*a^2*x^4*Sinh[3*C[1]]*(27*a^6*x^12 - 144*a^5*x^9*Cosh[3*C[1]] + 272*a^4*x^6*Cosh[6*C[1]] - 256*a^3*x^3*Cosh[9*C[1]] + 128*a^2*Cosh[12*C[1]] - 144*a^5*x^9*Sinh[3*C[1]] + 272*a^4*x^6*Sinh[6*C[1]] - 256*a^3*x^3*Sinh[9*C[1]] + 128*a^2*Sinh[12*C[1]] + 64*Sqrt[-(a^4*((-1 + a*x^3)*Cosh[(3*C[1])/2] - (1 + a*x^3)*Sinh[(3*C[1])/2])^3*((-2 + a*x^3)*Cosh[(3*C[1])/2] - (2 + a*x^3)*Sinh[(3*C[1])/2])^2*(Cosh[(33*C[1])/2] + Sinh[(33*C[1])/2]))])^(1/3) - Cosh[3*C[1]]*(27*a^6*x^12 - 144*a^5*x^9*Cosh[3*C[1]] + 272*a^4*x^6*Cosh[6*C[1]] - 256*a^3*x^3*Cosh[9*C[1]] + 128*a^2*Cosh[12*C[1]] - 144*a^5*x^9*Sinh[3*C[1]] + 272*a^4*x^6*Sinh[6*C[1]] - 256*a^3*x^3*Sinh[9*C[1]] + 128*a^2*Sinh[12*C[1]] + 64*Sqrt[-(a^4*((-1 + a*x^3)*Cosh[(3*C[1])/2] - (1 + a*x^3)*Sinh[(3*C[1])/2])^3*((-2 + a*x^3)*Cosh[(3*C[1])/2] - (2 + a*x^3)*Sinh[(3*C[1])/2])^2*(Cosh[(33*C[1])/2] + Sinh[(33*C[1])/2]))])^(2/3) + I*Sqrt[3]*Cosh[3*C[1]]*(27*a^6*x^12 - 144*a^5*x^9*Cosh[3*C[1]] + 272*a^4*x^6*Cosh[6*C[1]] - 256*a^3*x^3*Cosh[9*C[1]] + 128*a^2*Cosh[12*C[1]] - 144*a^5*x^9*Sinh[3*C[1]] + 272*a^4*x^6*Sinh[6*C[1]] - 256*a^3*x^3*Sinh[9*C[1]] + 128*a^2*Sinh[12*C[1]] + 64*Sqrt[-(a^4*((-1 + a*x^3)*Cosh[(3*C[1])/2] - (1 + a*x^3)*Sinh[(3*C[1])/2])^3*((-2 + a*x^3)*Cosh[(3*C[1])/2] - (2 + a*x^3)*Sinh[(3*C[1])/2])^2*(Cosh[(33*C[1])/2] + Sinh[(33*C[1])/2]))])^(2/3) + Sinh[3*C[1]]*(27*a^6*x^12 - 144*a^5*x^9*Cosh[3*C[1]] + 272*a^4*x^6*Cosh[6*C[1]] - 256*a^3*x^3*Cosh[9*C[1]] + 128*a^2*Cosh[12*C[1]] - 144*a^5*x^9*Sinh[3*C[1]] + 272*a^4*x^6*Sinh[6*C[1]] - 256*a^3*x^3*Sinh[9*C[1]] + 128*a^2*Sinh[12*C[1]] + 64*Sqrt[-(a^4*((-1 + a*x^3)*Cosh[(3*C[1])/2] - (1 + a*x^3)*Sinh[(3*C[1])/2])^3*((-2 + a*x^3)*Cosh[(3*C[1])/2] - (2 + a*x^3)*Sinh[(3*C[1])/2])^2*(Cosh[(33*C[1])/2] + Sinh[(33*C[1])/2]))])^(2/3) - I*Sqrt[3]*Sinh[3*C[1]]*(27*a^6*x^12 - 144*a^5*x^9*Cosh[3*C[1]] + 272*a^4*x^6*Cosh[6*C[1]] - 256*a^3*x^3*Cosh[9*C[1]] + 128*a^2*Cosh[12*C[1]] - 144*a^5*x^9*Sinh[3*C[1]] + 272*a^4*x^6*Sinh[6*C[1]] - 256*a^3*x^3*Sinh[9*C[1]] + 128*a^2*Sinh[12*C[1]] + 64*Sqrt[-(a^4*((-1 + a*x^3)*Cosh[(3*C[1])/2] - (1 + a*x^3)*Sinh[(3*C[1])/2])^3*((-2 + a*x^3)*Cosh[(3*C[1])/2] - (2 + a*x^3)*Sinh[(3*C[1])/2])^2*(Cosh[(33*C[1])/2] + Sinh[(33*C[1])/2]))])^(2/3))/(27*a^6*x^12 - 144*a^5*x^9*Cosh[3*C[1]] + 272*a^4*x^6*Cosh[6*C[1]] - 256*a^3*x^3*Cosh[9*C[1]] + 128*a^2*Cosh[12*C[1]] - 144*a^5*x^9*Sinh[3*C[1]] + 272*a^4*x^6*Sinh[6*C[1]] - 256*a^3*x^3*Sinh[9*C[1]] + 128*a^2*Sinh[12*C[1]] + 64*Sqrt[-(a^4*((-1 + a*x^3)*Cosh[(3*C[1])/2] - (1 + a*x^3)*Sinh[(3*C[1])/2])^3*((-2 + a*x^3)*Cosh[(3*C[1])/2] - (2 + a*x^3)*Sinh[(3*C[1])/2])^2*(Cosh[(33*C[1])/2] + Sinh[(33*C[1])/2]))])^(1/3)]/(4*Sqrt[2])}, {y[x] -> Sqrt[(32*a^3*x^5 + (32*I)*Sqrt[3]*a^3*x^5 - 32*a^2*x^2*Cosh[3*C[1]] - (32*I)*Sqrt[3]*a^2*x^2*Cosh[3*C[1]] - 9*a^4*x^8*Cosh[3*C[1]] - (9*I)*Sqrt[3]*a^4*x^8*Cosh[3*C[1]] - 32*a^2*x^2*Sinh[3*C[1]] - (32*I)*Sqrt[3]*a^2*x^2*Sinh[3*C[1]] + 9*a^4*x^8*Sinh[3*C[1]] + (9*I)*Sqrt[3]*a^4*x^8*Sinh[3*C[1]] + 32*a*x*(27*a^6*x^12 - 144*a^5*x^9*Cosh[3*C[1]] + 272*a^4*x^6*Cosh[6*C[1]] - 256*a^3*x^3*Cosh[9*C[1]] + 128*a^2*Cosh[12*C[1]] - 144*a^5*x^9*Sinh[3*C[1]] + 272*a^4*x^6*Sinh[6*C[1]] - 256*a^3*x^3*Sinh[9*C[1]] + 128*a^2*Sinh[12*C[1]] + 64*Sqrt[-(a^4*((-1 + a*x^3)*Cosh[(3*C[1])/2] - (1 + a*x^3)*Sinh[(3*C[1])/2])^3*((-2 + a*x^3)*Cosh[(3*C[1])/2] - (2 + a*x^3)*Sinh[(3*C[1])/2])^2*(Cosh[(33*C[1])/2] + Sinh[(33*C[1])/2]))])^(1/3) + 6*a^2*x^4*Cosh[3*C[1]]*(27*a^6*x^12 - 144*a^5*x^9*Cosh[3*C[1]] + 272*a^4*x^6*Cosh[6*C[1]] - 256*a^3*x^3*Cosh[9*C[1]] + 128*a^2*Cosh[12*C[1]] - 144*a^5*x^9*Sinh[3*C[1]] + 272*a^4*x^6*Sinh[6*C[1]] - 256*a^3*x^3*Sinh[9*C[1]] + 128*a^2*Sinh[12*C[1]] + 64*Sqrt[-(a^4*((-1 + a*x^3)*Cosh[(3*C[1])/2] - (1 + a*x^3)*Sinh[(3*C[1])/2])^3*((-2 + a*x^3)*Cosh[(3*C[1])/2] - (2 + a*x^3)*Sinh[(3*C[1])/2])^2*(Cosh[(33*C[1])/2] + Sinh[(33*C[1])/2]))])^(1/3) - 6*a^2*x^4*Sinh[3*C[1]]*(27*a^6*x^12 - 144*a^5*x^9*Cosh[3*C[1]] + 272*a^4*x^6*Cosh[6*C[1]] - 256*a^3*x^3*Cosh[9*C[1]] + 128*a^2*Cosh[12*C[1]] - 144*a^5*x^9*Sinh[3*C[1]] + 272*a^4*x^6*Sinh[6*C[1]] - 256*a^3*x^3*Sinh[9*C[1]] + 128*a^2*Sinh[12*C[1]] + 64*Sqrt[-(a^4*((-1 + a*x^3)*Cosh[(3*C[1])/2] - (1 + a*x^3)*Sinh[(3*C[1])/2])^3*((-2 + a*x^3)*Cosh[(3*C[1])/2] - (2 + a*x^3)*Sinh[(3*C[1])/2])^2*(Cosh[(33*C[1])/2] + Sinh[(33*C[1])/2]))])^(1/3) - Cosh[3*C[1]]*(27*a^6*x^12 - 144*a^5*x^9*Cosh[3*C[1]] + 272*a^4*x^6*Cosh[6*C[1]] - 256*a^3*x^3*Cosh[9*C[1]] + 128*a^2*Cosh[12*C[1]] - 144*a^5*x^9*Sinh[3*C[1]] + 272*a^4*x^6*Sinh[6*C[1]] - 256*a^3*x^3*Sinh[9*C[1]] + 128*a^2*Sinh[12*C[1]] + 64*Sqrt[-(a^4*((-1 + a*x^3)*Cosh[(3*C[1])/2] - (1 + a*x^3)*Sinh[(3*C[1])/2])^3*((-2 + a*x^3)*Cosh[(3*C[1])/2] - (2 + a*x^3)*Sinh[(3*C[1])/2])^2*(Cosh[(33*C[1])/2] + Sinh[(33*C[1])/2]))])^(2/3) + I*Sqrt[3]*Cosh[3*C[1]]*(27*a^6*x^12 - 144*a^5*x^9*Cosh[3*C[1]] + 272*a^4*x^6*Cosh[6*C[1]] - 256*a^3*x^3*Cosh[9*C[1]] + 128*a^2*Cosh[12*C[1]] - 144*a^5*x^9*Sinh[3*C[1]] + 272*a^4*x^6*Sinh[6*C[1]] - 256*a^3*x^3*Sinh[9*C[1]] + 128*a^2*Sinh[12*C[1]] + 64*Sqrt[-(a^4*((-1 + a*x^3)*Cosh[(3*C[1])/2] - (1 + a*x^3)*Sinh[(3*C[1])/2])^3*((-2 + a*x^3)*Cosh[(3*C[1])/2] - (2 + a*x^3)*Sinh[(3*C[1])/2])^2*(Cosh[(33*C[1])/2] + Sinh[(33*C[1])/2]))])^(2/3) + Sinh[3*C[1]]*(27*a^6*x^12 - 144*a^5*x^9*Cosh[3*C[1]] + 272*a^4*x^6*Cosh[6*C[1]] - 256*a^3*x^3*Cosh[9*C[1]] + 128*a^2*Cosh[12*C[1]] - 144*a^5*x^9*Sinh[3*C[1]] + 272*a^4*x^6*Sinh[6*C[1]] - 256*a^3*x^3*Sinh[9*C[1]] + 128*a^2*Sinh[12*C[1]] + 64*Sqrt[-(a^4*((-1 + a*x^3)*Cosh[(3*C[1])/2] - (1 + a*x^3)*Sinh[(3*C[1])/2])^3*((-2 + a*x^3)*Cosh[(3*C[1])/2] - (2 + a*x^3)*Sinh[(3*C[1])/2])^2*(Cosh[(33*C[1])/2] + Sinh[(33*C[1])/2]))])^(2/3) - I*Sqrt[3]*Sinh[3*C[1]]*(27*a^6*x^12 - 144*a^5*x^9*Cosh[3*C[1]] + 272*a^4*x^6*Cosh[6*C[1]] - 256*a^3*x^3*Cosh[9*C[1]] + 128*a^2*Cosh[12*C[1]] - 144*a^5*x^9*Sinh[3*C[1]] + 272*a^4*x^6*Sinh[6*C[1]] - 256*a^3*x^3*Sinh[9*C[1]] + 128*a^2*Sinh[12*C[1]] + 64*Sqrt[-(a^4*((-1 + a*x^3)*Cosh[(3*C[1])/2] - (1 + a*x^3)*Sinh[(3*C[1])/2])^3*((-2 + a*x^3)*Cosh[(3*C[1])/2] - (2 + a*x^3)*Sinh[(3*C[1])/2])^2*(Cosh[(33*C[1])/2] + Sinh[(33*C[1])/2]))])^(2/3))/(27*a^6*x^12 - 144*a^5*x^9*Cosh[3*C[1]] + 272*a^4*x^6*Cosh[6*C[1]] - 256*a^3*x^3*Cosh[9*C[1]] + 128*a^2*Cosh[12*C[1]] - 144*a^5*x^9*Sinh[3*C[1]] + 272*a^4*x^6*Sinh[6*C[1]] - 256*a^3*x^3*Sinh[9*C[1]] + 128*a^2*Sinh[12*C[1]] + 64*Sqrt[-(a^4*((-1 + a*x^3)*Cosh[(3*C[1])/2] - (1 + a*x^3)*Sinh[(3*C[1])/2])^3*((-2 + a*x^3)*Cosh[(3*C[1])/2] - (2 + a*x^3)*Sinh[(3*C[1])/2])^2*(Cosh[(33*C[1])/2] + Sinh[(33*C[1])/2]))])^(1/3)]/(4*Sqrt[2])}}
Maple raw input
dsolve(x*diff(y(x),x)^2-2*y(x)*diff(y(x),x)+a = 0, y(x),'implicit')
Maple raw output
[x(_T) = _T*(1/3*a/_T^3+_C1), y(_T) = 1/6/_T*(3*_C1*_T^3+4*a)]