ODE
\[ (21 y(x)+9 x+3) y'(x)=-5 y(x)+7 x+45 \] ODE Classification
[[_homogeneous, `class C`], _rational, [_Abel, `2nd type`, `class A`]]
Book solution method
Equation linear in the variables, \(y'(x)=f\left ( \frac {X_1}{X_2} \right ) \)
Mathematica ✓
cpu = 2.63321 (sec), leaf count = 7715
\[\left \{\left \{y(x)\to \frac {1}{21} \left (-9 x+\frac {1}{\text {Root}\left [\left (12824703626379264 x^{14}+897729253846548480 x^{13}+29176200750012825600 x^{12}+583524015000256512000 x^{11}+8023455206253527040000 x^{10}+80234552062535270400000 x^9+601759140469014528000000 x^8+3438623659822940160000000 x^7+15043978511725363200000000 x^6+50146595039084544000000000 x^5+125366487597711360000000000 x^4+227939068359475200000000000 x^3+284923835449344000000000000 x^2+219172181114880000000000000 x+12824703626379264 e^{168 c_1}+78275778969600000000000000\right ) \text {$\#$1}^{14}+\left (-467567319711744 x^{12}-28054039182704640 x^{11}-771486077524377600 x^{10}-12858101292072960000 x^9-144653639535820800000 x^8-1157229116286566400000 x^7-6750503178338304000000 x^6-28930727907164160000000 x^5-90408524709888000000000 x^4-200907832688640000000000 x^3-301361749032960000000000 x^2-273965226393600000000000 x-114152177664000000000000\right ) \text {$\#$1}^{12}+\left (6493990551552 x^{11}+357169480335360 x^{10}+8929237008384000 x^9+133938555125760000 x^8+1339385551257600000 x^7+9375698858803200000 x^6+46878494294016000000 x^5+167423193907200000000 x^4+418557984768000000000 x^3+697596641280000000000 x^2+697596641280000000000 x+317089382400000000000\right ) \text {$\#$1}^{11}+\left (7204270768128 x^{10}+360213538406400 x^9+8104804614144000 x^8+108064061521920000 x^7+945560538316800000 x^6+5673363229900800000 x^5+23639013457920000000 x^4+67540038451200000000 x^3+126637572096000000000 x^2+140708413440000000000 x+70354206720000000000\right ) \text {$\#$1}^{10}+\left (-194481487872 x^9-8751666954240 x^8-175033339084800 x^7-2042055622656000 x^6-15315417169920000 x^5-76577085849600000 x^4-255256952832000000 x^3-546979184640000000 x^2-683723980800000000 x-379846656000000000\right ) \text {$\#$1}^9+\left (-59160657920 x^8-2366426316800 x^7-41412460544000 x^6-414124605440000 x^5-2588278784000000 x^4-10353115136000000 x^3-25882787840000000 x^2-36975411200000000 x-23109632000000000\right ) \text {$\#$1}^8+\left (2358771712 x^7+82557009920 x^6+1238355148800 x^5+10319626240000 x^4+51598131200000 x^3+154794393600000 x^2+257990656000000 x+184279040000000\right ) \text {$\#$1}^7+\left (265129984 x^6+7953899520 x^5+99423744000 x^4+662824960000 x^3+2485593600000 x^2+4971187200000 x+4142656000000\right ) \text {$\#$1}^6+\left (-14465024 x^5-361625600 x^4-3616256000 x^3-18081280000 x^2-45203200000 x-45203200000\right ) \text {$\#$1}^5+\left (-557312 x^4-11146240 x^3-83596800 x^2-278656000 x-348320000\right ) \text {$\#$1}^4+\left (44800 x^3+672000 x^2+3360000 x+5600000\right ) \text {$\#$1}^3+\left (112 x^2+1120 x+2800\right ) \text {$\#$1}^2+(-56 x-280) \text {$\#$1}+1\& ,1\right ]}-3\right )\right \},\left \{y(x)\to \frac {1}{21} \left (-9 x+\frac {1}{\text {Root}\left [\left (12824703626379264 x^{14}+897729253846548480 x^{13}+29176200750012825600 x^{12}+583524015000256512000 x^{11}+8023455206253527040000 x^{10}+80234552062535270400000 x^9+601759140469014528000000 x^8+3438623659822940160000000 x^7+15043978511725363200000000 x^6+50146595039084544000000000 x^5+125366487597711360000000000 x^4+227939068359475200000000000 x^3+284923835449344000000000000 x^2+219172181114880000000000000 x+12824703626379264 e^{168 c_1}+78275778969600000000000000\right ) \text {$\#$1}^{14}+\left (-467567319711744 x^{12}-28054039182704640 x^{11}-771486077524377600 x^{10}-12858101292072960000 x^9-144653639535820800000 x^8-1157229116286566400000 x^7-6750503178338304000000 x^6-28930727907164160000000 x^5-90408524709888000000000 x^4-200907832688640000000000 x^3-301361749032960000000000 x^2-273965226393600000000000 x-114152177664000000000000\right ) \text {$\#$1}^{12}+\left (6493990551552 x^{11}+357169480335360 x^{10}+8929237008384000 x^9+133938555125760000 x^8+1339385551257600000 x^7+9375698858803200000 x^6+46878494294016000000 x^5+167423193907200000000 x^4+418557984768000000000 x^3+697596641280000000000 x^2+697596641280000000000 x+317089382400000000000\right ) \text {$\#$1}^{11}+\left (7204270768128 x^{10}+360213538406400 x^9+8104804614144000 x^8+108064061521920000 x^7+945560538316800000 x^6+5673363229900800000 x^5+23639013457920000000 x^4+67540038451200000000 x^3+126637572096000000000 x^2+140708413440000000000 x+70354206720000000000\right ) \text {$\#$1}^{10}+\left (-194481487872 x^9-8751666954240 x^8-175033339084800 x^7-2042055622656000 x^6-15315417169920000 x^5-76577085849600000 x^4-255256952832000000 x^3-546979184640000000 x^2-683723980800000000 x-379846656000000000\right ) \text {$\#$1}^9+\left (-59160657920 x^8-2366426316800 x^7-41412460544000 x^6-414124605440000 x^5-2588278784000000 x^4-10353115136000000 x^3-25882787840000000 x^2-36975411200000000 x-23109632000000000\right ) \text {$\#$1}^8+\left (2358771712 x^7+82557009920 x^6+1238355148800 x^5+10319626240000 x^4+51598131200000 x^3+154794393600000 x^2+257990656000000 x+184279040000000\right ) \text {$\#$1}^7+\left (265129984 x^6+7953899520 x^5+99423744000 x^4+662824960000 x^3+2485593600000 x^2+4971187200000 x+4142656000000\right ) \text {$\#$1}^6+\left (-14465024 x^5-361625600 x^4-3616256000 x^3-18081280000 x^2-45203200000 x-45203200000\right ) \text {$\#$1}^5+\left (-557312 x^4-11146240 x^3-83596800 x^2-278656000 x-348320000\right ) \text {$\#$1}^4+\left (44800 x^3+672000 x^2+3360000 x+5600000\right ) \text {$\#$1}^3+\left (112 x^2+1120 x+2800\right ) \text {$\#$1}^2+(-56 x-280) \text {$\#$1}+1\& ,2\right ]}-3\right )\right \},\left \{y(x)\to \frac {1}{21} \left (-9 x+\frac {1}{\text {Root}\left [\left (12824703626379264 x^{14}+897729253846548480 x^{13}+29176200750012825600 x^{12}+583524015000256512000 x^{11}+8023455206253527040000 x^{10}+80234552062535270400000 x^9+601759140469014528000000 x^8+3438623659822940160000000 x^7+15043978511725363200000000 x^6+50146595039084544000000000 x^5+125366487597711360000000000 x^4+227939068359475200000000000 x^3+284923835449344000000000000 x^2+219172181114880000000000000 x+12824703626379264 e^{168 c_1}+78275778969600000000000000\right ) \text {$\#$1}^{14}+\left (-467567319711744 x^{12}-28054039182704640 x^{11}-771486077524377600 x^{10}-12858101292072960000 x^9-144653639535820800000 x^8-1157229116286566400000 x^7-6750503178338304000000 x^6-28930727907164160000000 x^5-90408524709888000000000 x^4-200907832688640000000000 x^3-301361749032960000000000 x^2-273965226393600000000000 x-114152177664000000000000\right ) \text {$\#$1}^{12}+\left (6493990551552 x^{11}+357169480335360 x^{10}+8929237008384000 x^9+133938555125760000 x^8+1339385551257600000 x^7+9375698858803200000 x^6+46878494294016000000 x^5+167423193907200000000 x^4+418557984768000000000 x^3+697596641280000000000 x^2+697596641280000000000 x+317089382400000000000\right ) \text {$\#$1}^{11}+\left (7204270768128 x^{10}+360213538406400 x^9+8104804614144000 x^8+108064061521920000 x^7+945560538316800000 x^6+5673363229900800000 x^5+23639013457920000000 x^4+67540038451200000000 x^3+126637572096000000000 x^2+140708413440000000000 x+70354206720000000000\right ) \text {$\#$1}^{10}+\left (-194481487872 x^9-8751666954240 x^8-175033339084800 x^7-2042055622656000 x^6-15315417169920000 x^5-76577085849600000 x^4-255256952832000000 x^3-546979184640000000 x^2-683723980800000000 x-379846656000000000\right ) \text {$\#$1}^9+\left (-59160657920 x^8-2366426316800 x^7-41412460544000 x^6-414124605440000 x^5-2588278784000000 x^4-10353115136000000 x^3-25882787840000000 x^2-36975411200000000 x-23109632000000000\right ) \text {$\#$1}^8+\left (2358771712 x^7+82557009920 x^6+1238355148800 x^5+10319626240000 x^4+51598131200000 x^3+154794393600000 x^2+257990656000000 x+184279040000000\right ) \text {$\#$1}^7+\left (265129984 x^6+7953899520 x^5+99423744000 x^4+662824960000 x^3+2485593600000 x^2+4971187200000 x+4142656000000\right ) \text {$\#$1}^6+\left (-14465024 x^5-361625600 x^4-3616256000 x^3-18081280000 x^2-45203200000 x-45203200000\right ) \text {$\#$1}^5+\left (-557312 x^4-11146240 x^3-83596800 x^2-278656000 x-348320000\right ) \text {$\#$1}^4+\left (44800 x^3+672000 x^2+3360000 x+5600000\right ) \text {$\#$1}^3+\left (112 x^2+1120 x+2800\right ) \text {$\#$1}^2+(-56 x-280) \text {$\#$1}+1\& ,3\right ]}-3\right )\right \},\left \{y(x)\to \frac {1}{21} \left (-9 x+\frac {1}{\text {Root}\left [\left (12824703626379264 x^{14}+897729253846548480 x^{13}+29176200750012825600 x^{12}+583524015000256512000 x^{11}+8023455206253527040000 x^{10}+80234552062535270400000 x^9+601759140469014528000000 x^8+3438623659822940160000000 x^7+15043978511725363200000000 x^6+50146595039084544000000000 x^5+125366487597711360000000000 x^4+227939068359475200000000000 x^3+284923835449344000000000000 x^2+219172181114880000000000000 x+12824703626379264 e^{168 c_1}+78275778969600000000000000\right ) \text {$\#$1}^{14}+\left (-467567319711744 x^{12}-28054039182704640 x^{11}-771486077524377600 x^{10}-12858101292072960000 x^9-144653639535820800000 x^8-1157229116286566400000 x^7-6750503178338304000000 x^6-28930727907164160000000 x^5-90408524709888000000000 x^4-200907832688640000000000 x^3-301361749032960000000000 x^2-273965226393600000000000 x-114152177664000000000000\right ) \text {$\#$1}^{12}+\left (6493990551552 x^{11}+357169480335360 x^{10}+8929237008384000 x^9+133938555125760000 x^8+1339385551257600000 x^7+9375698858803200000 x^6+46878494294016000000 x^5+167423193907200000000 x^4+418557984768000000000 x^3+697596641280000000000 x^2+697596641280000000000 x+317089382400000000000\right ) \text {$\#$1}^{11}+\left (7204270768128 x^{10}+360213538406400 x^9+8104804614144000 x^8+108064061521920000 x^7+945560538316800000 x^6+5673363229900800000 x^5+23639013457920000000 x^4+67540038451200000000 x^3+126637572096000000000 x^2+140708413440000000000 x+70354206720000000000\right ) \text {$\#$1}^{10}+\left (-194481487872 x^9-8751666954240 x^8-175033339084800 x^7-2042055622656000 x^6-15315417169920000 x^5-76577085849600000 x^4-255256952832000000 x^3-546979184640000000 x^2-683723980800000000 x-379846656000000000\right ) \text {$\#$1}^9+\left (-59160657920 x^8-2366426316800 x^7-41412460544000 x^6-414124605440000 x^5-2588278784000000 x^4-10353115136000000 x^3-25882787840000000 x^2-36975411200000000 x-23109632000000000\right ) \text {$\#$1}^8+\left (2358771712 x^7+82557009920 x^6+1238355148800 x^5+10319626240000 x^4+51598131200000 x^3+154794393600000 x^2+257990656000000 x+184279040000000\right ) \text {$\#$1}^7+\left (265129984 x^6+7953899520 x^5+99423744000 x^4+662824960000 x^3+2485593600000 x^2+4971187200000 x+4142656000000\right ) \text {$\#$1}^6+\left (-14465024 x^5-361625600 x^4-3616256000 x^3-18081280000 x^2-45203200000 x-45203200000\right ) \text {$\#$1}^5+\left (-557312 x^4-11146240 x^3-83596800 x^2-278656000 x-348320000\right ) \text {$\#$1}^4+\left (44800 x^3+672000 x^2+3360000 x+5600000\right ) \text {$\#$1}^3+\left (112 x^2+1120 x+2800\right ) \text {$\#$1}^2+(-56 x-280) \text {$\#$1}+1\& ,4\right ]}-3\right )\right \},\left \{y(x)\to \frac {1}{21} \left (-9 x+\frac {1}{\text {Root}\left [\left (12824703626379264 x^{14}+897729253846548480 x^{13}+29176200750012825600 x^{12}+583524015000256512000 x^{11}+8023455206253527040000 x^{10}+80234552062535270400000 x^9+601759140469014528000000 x^8+3438623659822940160000000 x^7+15043978511725363200000000 x^6+50146595039084544000000000 x^5+125366487597711360000000000 x^4+227939068359475200000000000 x^3+284923835449344000000000000 x^2+219172181114880000000000000 x+12824703626379264 e^{168 c_1}+78275778969600000000000000\right ) \text {$\#$1}^{14}+\left (-467567319711744 x^{12}-28054039182704640 x^{11}-771486077524377600 x^{10}-12858101292072960000 x^9-144653639535820800000 x^8-1157229116286566400000 x^7-6750503178338304000000 x^6-28930727907164160000000 x^5-90408524709888000000000 x^4-200907832688640000000000 x^3-301361749032960000000000 x^2-273965226393600000000000 x-114152177664000000000000\right ) \text {$\#$1}^{12}+\left (6493990551552 x^{11}+357169480335360 x^{10}+8929237008384000 x^9+133938555125760000 x^8+1339385551257600000 x^7+9375698858803200000 x^6+46878494294016000000 x^5+167423193907200000000 x^4+418557984768000000000 x^3+697596641280000000000 x^2+697596641280000000000 x+317089382400000000000\right ) \text {$\#$1}^{11}+\left (7204270768128 x^{10}+360213538406400 x^9+8104804614144000 x^8+108064061521920000 x^7+945560538316800000 x^6+5673363229900800000 x^5+23639013457920000000 x^4+67540038451200000000 x^3+126637572096000000000 x^2+140708413440000000000 x+70354206720000000000\right ) \text {$\#$1}^{10}+\left (-194481487872 x^9-8751666954240 x^8-175033339084800 x^7-2042055622656000 x^6-15315417169920000 x^5-76577085849600000 x^4-255256952832000000 x^3-546979184640000000 x^2-683723980800000000 x-379846656000000000\right ) \text {$\#$1}^9+\left (-59160657920 x^8-2366426316800 x^7-41412460544000 x^6-414124605440000 x^5-2588278784000000 x^4-10353115136000000 x^3-25882787840000000 x^2-36975411200000000 x-23109632000000000\right ) \text {$\#$1}^8+\left (2358771712 x^7+82557009920 x^6+1238355148800 x^5+10319626240000 x^4+51598131200000 x^3+154794393600000 x^2+257990656000000 x+184279040000000\right ) \text {$\#$1}^7+\left (265129984 x^6+7953899520 x^5+99423744000 x^4+662824960000 x^3+2485593600000 x^2+4971187200000 x+4142656000000\right ) \text {$\#$1}^6+\left (-14465024 x^5-361625600 x^4-3616256000 x^3-18081280000 x^2-45203200000 x-45203200000\right ) \text {$\#$1}^5+\left (-557312 x^4-11146240 x^3-83596800 x^2-278656000 x-348320000\right ) \text {$\#$1}^4+\left (44800 x^3+672000 x^2+3360000 x+5600000\right ) \text {$\#$1}^3+\left (112 x^2+1120 x+2800\right ) \text {$\#$1}^2+(-56 x-280) \text {$\#$1}+1\& ,5\right ]}-3\right )\right \},\left \{y(x)\to \frac {1}{21} \left (-9 x+\frac {1}{\text {Root}\left [\left (12824703626379264 x^{14}+897729253846548480 x^{13}+29176200750012825600 x^{12}+583524015000256512000 x^{11}+8023455206253527040000 x^{10}+80234552062535270400000 x^9+601759140469014528000000 x^8+3438623659822940160000000 x^7+15043978511725363200000000 x^6+50146595039084544000000000 x^5+125366487597711360000000000 x^4+227939068359475200000000000 x^3+284923835449344000000000000 x^2+219172181114880000000000000 x+12824703626379264 e^{168 c_1}+78275778969600000000000000\right ) \text {$\#$1}^{14}+\left (-467567319711744 x^{12}-28054039182704640 x^{11}-771486077524377600 x^{10}-12858101292072960000 x^9-144653639535820800000 x^8-1157229116286566400000 x^7-6750503178338304000000 x^6-28930727907164160000000 x^5-90408524709888000000000 x^4-200907832688640000000000 x^3-301361749032960000000000 x^2-273965226393600000000000 x-114152177664000000000000\right ) \text {$\#$1}^{12}+\left (6493990551552 x^{11}+357169480335360 x^{10}+8929237008384000 x^9+133938555125760000 x^8+1339385551257600000 x^7+9375698858803200000 x^6+46878494294016000000 x^5+167423193907200000000 x^4+418557984768000000000 x^3+697596641280000000000 x^2+697596641280000000000 x+317089382400000000000\right ) \text {$\#$1}^{11}+\left (7204270768128 x^{10}+360213538406400 x^9+8104804614144000 x^8+108064061521920000 x^7+945560538316800000 x^6+5673363229900800000 x^5+23639013457920000000 x^4+67540038451200000000 x^3+126637572096000000000 x^2+140708413440000000000 x+70354206720000000000\right ) \text {$\#$1}^{10}+\left (-194481487872 x^9-8751666954240 x^8-175033339084800 x^7-2042055622656000 x^6-15315417169920000 x^5-76577085849600000 x^4-255256952832000000 x^3-546979184640000000 x^2-683723980800000000 x-379846656000000000\right ) \text {$\#$1}^9+\left (-59160657920 x^8-2366426316800 x^7-41412460544000 x^6-414124605440000 x^5-2588278784000000 x^4-10353115136000000 x^3-25882787840000000 x^2-36975411200000000 x-23109632000000000\right ) \text {$\#$1}^8+\left (2358771712 x^7+82557009920 x^6+1238355148800 x^5+10319626240000 x^4+51598131200000 x^3+154794393600000 x^2+257990656000000 x+184279040000000\right ) \text {$\#$1}^7+\left (265129984 x^6+7953899520 x^5+99423744000 x^4+662824960000 x^3+2485593600000 x^2+4971187200000 x+4142656000000\right ) \text {$\#$1}^6+\left (-14465024 x^5-361625600 x^4-3616256000 x^3-18081280000 x^2-45203200000 x-45203200000\right ) \text {$\#$1}^5+\left (-557312 x^4-11146240 x^3-83596800 x^2-278656000 x-348320000\right ) \text {$\#$1}^4+\left (44800 x^3+672000 x^2+3360000 x+5600000\right ) \text {$\#$1}^3+\left (112 x^2+1120 x+2800\right ) \text {$\#$1}^2+(-56 x-280) \text {$\#$1}+1\& ,6\right ]}-3\right )\right \},\left \{y(x)\to \frac {1}{21} \left (-9 x+\frac {1}{\text {Root}\left [\left (12824703626379264 x^{14}+897729253846548480 x^{13}+29176200750012825600 x^{12}+583524015000256512000 x^{11}+8023455206253527040000 x^{10}+80234552062535270400000 x^9+601759140469014528000000 x^8+3438623659822940160000000 x^7+15043978511725363200000000 x^6+50146595039084544000000000 x^5+125366487597711360000000000 x^4+227939068359475200000000000 x^3+284923835449344000000000000 x^2+219172181114880000000000000 x+12824703626379264 e^{168 c_1}+78275778969600000000000000\right ) \text {$\#$1}^{14}+\left (-467567319711744 x^{12}-28054039182704640 x^{11}-771486077524377600 x^{10}-12858101292072960000 x^9-144653639535820800000 x^8-1157229116286566400000 x^7-6750503178338304000000 x^6-28930727907164160000000 x^5-90408524709888000000000 x^4-200907832688640000000000 x^3-301361749032960000000000 x^2-273965226393600000000000 x-114152177664000000000000\right ) \text {$\#$1}^{12}+\left (6493990551552 x^{11}+357169480335360 x^{10}+8929237008384000 x^9+133938555125760000 x^8+1339385551257600000 x^7+9375698858803200000 x^6+46878494294016000000 x^5+167423193907200000000 x^4+418557984768000000000 x^3+697596641280000000000 x^2+697596641280000000000 x+317089382400000000000\right ) \text {$\#$1}^{11}+\left (7204270768128 x^{10}+360213538406400 x^9+8104804614144000 x^8+108064061521920000 x^7+945560538316800000 x^6+5673363229900800000 x^5+23639013457920000000 x^4+67540038451200000000 x^3+126637572096000000000 x^2+140708413440000000000 x+70354206720000000000\right ) \text {$\#$1}^{10}+\left (-194481487872 x^9-8751666954240 x^8-175033339084800 x^7-2042055622656000 x^6-15315417169920000 x^5-76577085849600000 x^4-255256952832000000 x^3-546979184640000000 x^2-683723980800000000 x-379846656000000000\right ) \text {$\#$1}^9+\left (-59160657920 x^8-2366426316800 x^7-41412460544000 x^6-414124605440000 x^5-2588278784000000 x^4-10353115136000000 x^3-25882787840000000 x^2-36975411200000000 x-23109632000000000\right ) \text {$\#$1}^8+\left (2358771712 x^7+82557009920 x^6+1238355148800 x^5+10319626240000 x^4+51598131200000 x^3+154794393600000 x^2+257990656000000 x+184279040000000\right ) \text {$\#$1}^7+\left (265129984 x^6+7953899520 x^5+99423744000 x^4+662824960000 x^3+2485593600000 x^2+4971187200000 x+4142656000000\right ) \text {$\#$1}^6+\left (-14465024 x^5-361625600 x^4-3616256000 x^3-18081280000 x^2-45203200000 x-45203200000\right ) \text {$\#$1}^5+\left (-557312 x^4-11146240 x^3-83596800 x^2-278656000 x-348320000\right ) \text {$\#$1}^4+\left (44800 x^3+672000 x^2+3360000 x+5600000\right ) \text {$\#$1}^3+\left (112 x^2+1120 x+2800\right ) \text {$\#$1}^2+(-56 x-280) \text {$\#$1}+1\& ,7\right ]}-3\right )\right \},\left \{y(x)\to \frac {1}{21} \left (-9 x+\frac {1}{\text {Root}\left [\left (12824703626379264 x^{14}+897729253846548480 x^{13}+29176200750012825600 x^{12}+583524015000256512000 x^{11}+8023455206253527040000 x^{10}+80234552062535270400000 x^9+601759140469014528000000 x^8+3438623659822940160000000 x^7+15043978511725363200000000 x^6+50146595039084544000000000 x^5+125366487597711360000000000 x^4+227939068359475200000000000 x^3+284923835449344000000000000 x^2+219172181114880000000000000 x+12824703626379264 e^{168 c_1}+78275778969600000000000000\right ) \text {$\#$1}^{14}+\left (-467567319711744 x^{12}-28054039182704640 x^{11}-771486077524377600 x^{10}-12858101292072960000 x^9-144653639535820800000 x^8-1157229116286566400000 x^7-6750503178338304000000 x^6-28930727907164160000000 x^5-90408524709888000000000 x^4-200907832688640000000000 x^3-301361749032960000000000 x^2-273965226393600000000000 x-114152177664000000000000\right ) \text {$\#$1}^{12}+\left (6493990551552 x^{11}+357169480335360 x^{10}+8929237008384000 x^9+133938555125760000 x^8+1339385551257600000 x^7+9375698858803200000 x^6+46878494294016000000 x^5+167423193907200000000 x^4+418557984768000000000 x^3+697596641280000000000 x^2+697596641280000000000 x+317089382400000000000\right ) \text {$\#$1}^{11}+\left (7204270768128 x^{10}+360213538406400 x^9+8104804614144000 x^8+108064061521920000 x^7+945560538316800000 x^6+5673363229900800000 x^5+23639013457920000000 x^4+67540038451200000000 x^3+126637572096000000000 x^2+140708413440000000000 x+70354206720000000000\right ) \text {$\#$1}^{10}+\left (-194481487872 x^9-8751666954240 x^8-175033339084800 x^7-2042055622656000 x^6-15315417169920000 x^5-76577085849600000 x^4-255256952832000000 x^3-546979184640000000 x^2-683723980800000000 x-379846656000000000\right ) \text {$\#$1}^9+\left (-59160657920 x^8-2366426316800 x^7-41412460544000 x^6-414124605440000 x^5-2588278784000000 x^4-10353115136000000 x^3-25882787840000000 x^2-36975411200000000 x-23109632000000000\right ) \text {$\#$1}^8+\left (2358771712 x^7+82557009920 x^6+1238355148800 x^5+10319626240000 x^4+51598131200000 x^3+154794393600000 x^2+257990656000000 x+184279040000000\right ) \text {$\#$1}^7+\left (265129984 x^6+7953899520 x^5+99423744000 x^4+662824960000 x^3+2485593600000 x^2+4971187200000 x+4142656000000\right ) \text {$\#$1}^6+\left (-14465024 x^5-361625600 x^4-3616256000 x^3-18081280000 x^2-45203200000 x-45203200000\right ) \text {$\#$1}^5+\left (-557312 x^4-11146240 x^3-83596800 x^2-278656000 x-348320000\right ) \text {$\#$1}^4+\left (44800 x^3+672000 x^2+3360000 x+5600000\right ) \text {$\#$1}^3+\left (112 x^2+1120 x+2800\right ) \text {$\#$1}^2+(-56 x-280) \text {$\#$1}+1\& ,8\right ]}-3\right )\right \},\left \{y(x)\to \frac {1}{21} \left (-9 x+\frac {1}{\text {Root}\left [\left (12824703626379264 x^{14}+897729253846548480 x^{13}+29176200750012825600 x^{12}+583524015000256512000 x^{11}+8023455206253527040000 x^{10}+80234552062535270400000 x^9+601759140469014528000000 x^8+3438623659822940160000000 x^7+15043978511725363200000000 x^6+50146595039084544000000000 x^5+125366487597711360000000000 x^4+227939068359475200000000000 x^3+284923835449344000000000000 x^2+219172181114880000000000000 x+12824703626379264 e^{168 c_1}+78275778969600000000000000\right ) \text {$\#$1}^{14}+\left (-467567319711744 x^{12}-28054039182704640 x^{11}-771486077524377600 x^{10}-12858101292072960000 x^9-144653639535820800000 x^8-1157229116286566400000 x^7-6750503178338304000000 x^6-28930727907164160000000 x^5-90408524709888000000000 x^4-200907832688640000000000 x^3-301361749032960000000000 x^2-273965226393600000000000 x-114152177664000000000000\right ) \text {$\#$1}^{12}+\left (6493990551552 x^{11}+357169480335360 x^{10}+8929237008384000 x^9+133938555125760000 x^8+1339385551257600000 x^7+9375698858803200000 x^6+46878494294016000000 x^5+167423193907200000000 x^4+418557984768000000000 x^3+697596641280000000000 x^2+697596641280000000000 x+317089382400000000000\right ) \text {$\#$1}^{11}+\left (7204270768128 x^{10}+360213538406400 x^9+8104804614144000 x^8+108064061521920000 x^7+945560538316800000 x^6+5673363229900800000 x^5+23639013457920000000 x^4+67540038451200000000 x^3+126637572096000000000 x^2+140708413440000000000 x+70354206720000000000\right ) \text {$\#$1}^{10}+\left (-194481487872 x^9-8751666954240 x^8-175033339084800 x^7-2042055622656000 x^6-15315417169920000 x^5-76577085849600000 x^4-255256952832000000 x^3-546979184640000000 x^2-683723980800000000 x-379846656000000000\right ) \text {$\#$1}^9+\left (-59160657920 x^8-2366426316800 x^7-41412460544000 x^6-414124605440000 x^5-2588278784000000 x^4-10353115136000000 x^3-25882787840000000 x^2-36975411200000000 x-23109632000000000\right ) \text {$\#$1}^8+\left (2358771712 x^7+82557009920 x^6+1238355148800 x^5+10319626240000 x^4+51598131200000 x^3+154794393600000 x^2+257990656000000 x+184279040000000\right ) \text {$\#$1}^7+\left (265129984 x^6+7953899520 x^5+99423744000 x^4+662824960000 x^3+2485593600000 x^2+4971187200000 x+4142656000000\right ) \text {$\#$1}^6+\left (-14465024 x^5-361625600 x^4-3616256000 x^3-18081280000 x^2-45203200000 x-45203200000\right ) \text {$\#$1}^5+\left (-557312 x^4-11146240 x^3-83596800 x^2-278656000 x-348320000\right ) \text {$\#$1}^4+\left (44800 x^3+672000 x^2+3360000 x+5600000\right ) \text {$\#$1}^3+\left (112 x^2+1120 x+2800\right ) \text {$\#$1}^2+(-56 x-280) \text {$\#$1}+1\& ,9\right ]}-3\right )\right \},\left \{y(x)\to \frac {1}{21} \left (-9 x+\frac {1}{\text {Root}\left [\left (12824703626379264 x^{14}+897729253846548480 x^{13}+29176200750012825600 x^{12}+583524015000256512000 x^{11}+8023455206253527040000 x^{10}+80234552062535270400000 x^9+601759140469014528000000 x^8+3438623659822940160000000 x^7+15043978511725363200000000 x^6+50146595039084544000000000 x^5+125366487597711360000000000 x^4+227939068359475200000000000 x^3+284923835449344000000000000 x^2+219172181114880000000000000 x+12824703626379264 e^{168 c_1}+78275778969600000000000000\right ) \text {$\#$1}^{14}+\left (-467567319711744 x^{12}-28054039182704640 x^{11}-771486077524377600 x^{10}-12858101292072960000 x^9-144653639535820800000 x^8-1157229116286566400000 x^7-6750503178338304000000 x^6-28930727907164160000000 x^5-90408524709888000000000 x^4-200907832688640000000000 x^3-301361749032960000000000 x^2-273965226393600000000000 x-114152177664000000000000\right ) \text {$\#$1}^{12}+\left (6493990551552 x^{11}+357169480335360 x^{10}+8929237008384000 x^9+133938555125760000 x^8+1339385551257600000 x^7+9375698858803200000 x^6+46878494294016000000 x^5+167423193907200000000 x^4+418557984768000000000 x^3+697596641280000000000 x^2+697596641280000000000 x+317089382400000000000\right ) \text {$\#$1}^{11}+\left (7204270768128 x^{10}+360213538406400 x^9+8104804614144000 x^8+108064061521920000 x^7+945560538316800000 x^6+5673363229900800000 x^5+23639013457920000000 x^4+67540038451200000000 x^3+126637572096000000000 x^2+140708413440000000000 x+70354206720000000000\right ) \text {$\#$1}^{10}+\left (-194481487872 x^9-8751666954240 x^8-175033339084800 x^7-2042055622656000 x^6-15315417169920000 x^5-76577085849600000 x^4-255256952832000000 x^3-546979184640000000 x^2-683723980800000000 x-379846656000000000\right ) \text {$\#$1}^9+\left (-59160657920 x^8-2366426316800 x^7-41412460544000 x^6-414124605440000 x^5-2588278784000000 x^4-10353115136000000 x^3-25882787840000000 x^2-36975411200000000 x-23109632000000000\right ) \text {$\#$1}^8+\left (2358771712 x^7+82557009920 x^6+1238355148800 x^5+10319626240000 x^4+51598131200000 x^3+154794393600000 x^2+257990656000000 x+184279040000000\right ) \text {$\#$1}^7+\left (265129984 x^6+7953899520 x^5+99423744000 x^4+662824960000 x^3+2485593600000 x^2+4971187200000 x+4142656000000\right ) \text {$\#$1}^6+\left (-14465024 x^5-361625600 x^4-3616256000 x^3-18081280000 x^2-45203200000 x-45203200000\right ) \text {$\#$1}^5+\left (-557312 x^4-11146240 x^3-83596800 x^2-278656000 x-348320000\right ) \text {$\#$1}^4+\left (44800 x^3+672000 x^2+3360000 x+5600000\right ) \text {$\#$1}^3+\left (112 x^2+1120 x+2800\right ) \text {$\#$1}^2+(-56 x-280) \text {$\#$1}+1\& ,10\right ]}-3\right )\right \},\left \{y(x)\to \frac {1}{21} \left (-9 x+\frac {1}{\text {Root}\left [\left (12824703626379264 x^{14}+897729253846548480 x^{13}+29176200750012825600 x^{12}+583524015000256512000 x^{11}+8023455206253527040000 x^{10}+80234552062535270400000 x^9+601759140469014528000000 x^8+3438623659822940160000000 x^7+15043978511725363200000000 x^6+50146595039084544000000000 x^5+125366487597711360000000000 x^4+227939068359475200000000000 x^3+284923835449344000000000000 x^2+219172181114880000000000000 x+12824703626379264 e^{168 c_1}+78275778969600000000000000\right ) \text {$\#$1}^{14}+\left (-467567319711744 x^{12}-28054039182704640 x^{11}-771486077524377600 x^{10}-12858101292072960000 x^9-144653639535820800000 x^8-1157229116286566400000 x^7-6750503178338304000000 x^6-28930727907164160000000 x^5-90408524709888000000000 x^4-200907832688640000000000 x^3-301361749032960000000000 x^2-273965226393600000000000 x-114152177664000000000000\right ) \text {$\#$1}^{12}+\left (6493990551552 x^{11}+357169480335360 x^{10}+8929237008384000 x^9+133938555125760000 x^8+1339385551257600000 x^7+9375698858803200000 x^6+46878494294016000000 x^5+167423193907200000000 x^4+418557984768000000000 x^3+697596641280000000000 x^2+697596641280000000000 x+317089382400000000000\right ) \text {$\#$1}^{11}+\left (7204270768128 x^{10}+360213538406400 x^9+8104804614144000 x^8+108064061521920000 x^7+945560538316800000 x^6+5673363229900800000 x^5+23639013457920000000 x^4+67540038451200000000 x^3+126637572096000000000 x^2+140708413440000000000 x+70354206720000000000\right ) \text {$\#$1}^{10}+\left (-194481487872 x^9-8751666954240 x^8-175033339084800 x^7-2042055622656000 x^6-15315417169920000 x^5-76577085849600000 x^4-255256952832000000 x^3-546979184640000000 x^2-683723980800000000 x-379846656000000000\right ) \text {$\#$1}^9+\left (-59160657920 x^8-2366426316800 x^7-41412460544000 x^6-414124605440000 x^5-2588278784000000 x^4-10353115136000000 x^3-25882787840000000 x^2-36975411200000000 x-23109632000000000\right ) \text {$\#$1}^8+\left (2358771712 x^7+82557009920 x^6+1238355148800 x^5+10319626240000 x^4+51598131200000 x^3+154794393600000 x^2+257990656000000 x+184279040000000\right ) \text {$\#$1}^7+\left (265129984 x^6+7953899520 x^5+99423744000 x^4+662824960000 x^3+2485593600000 x^2+4971187200000 x+4142656000000\right ) \text {$\#$1}^6+\left (-14465024 x^5-361625600 x^4-3616256000 x^3-18081280000 x^2-45203200000 x-45203200000\right ) \text {$\#$1}^5+\left (-557312 x^4-11146240 x^3-83596800 x^2-278656000 x-348320000\right ) \text {$\#$1}^4+\left (44800 x^3+672000 x^2+3360000 x+5600000\right ) \text {$\#$1}^3+\left (112 x^2+1120 x+2800\right ) \text {$\#$1}^2+(-56 x-280) \text {$\#$1}+1\& ,11\right ]}-3\right )\right \},\left \{y(x)\to \frac {1}{21} \left (-9 x+\frac {1}{\text {Root}\left [\left (12824703626379264 x^{14}+897729253846548480 x^{13}+29176200750012825600 x^{12}+583524015000256512000 x^{11}+8023455206253527040000 x^{10}+80234552062535270400000 x^9+601759140469014528000000 x^8+3438623659822940160000000 x^7+15043978511725363200000000 x^6+50146595039084544000000000 x^5+125366487597711360000000000 x^4+227939068359475200000000000 x^3+284923835449344000000000000 x^2+219172181114880000000000000 x+12824703626379264 e^{168 c_1}+78275778969600000000000000\right ) \text {$\#$1}^{14}+\left (-467567319711744 x^{12}-28054039182704640 x^{11}-771486077524377600 x^{10}-12858101292072960000 x^9-144653639535820800000 x^8-1157229116286566400000 x^7-6750503178338304000000 x^6-28930727907164160000000 x^5-90408524709888000000000 x^4-200907832688640000000000 x^3-301361749032960000000000 x^2-273965226393600000000000 x-114152177664000000000000\right ) \text {$\#$1}^{12}+\left (6493990551552 x^{11}+357169480335360 x^{10}+8929237008384000 x^9+133938555125760000 x^8+1339385551257600000 x^7+9375698858803200000 x^6+46878494294016000000 x^5+167423193907200000000 x^4+418557984768000000000 x^3+697596641280000000000 x^2+697596641280000000000 x+317089382400000000000\right ) \text {$\#$1}^{11}+\left (7204270768128 x^{10}+360213538406400 x^9+8104804614144000 x^8+108064061521920000 x^7+945560538316800000 x^6+5673363229900800000 x^5+23639013457920000000 x^4+67540038451200000000 x^3+126637572096000000000 x^2+140708413440000000000 x+70354206720000000000\right ) \text {$\#$1}^{10}+\left (-194481487872 x^9-8751666954240 x^8-175033339084800 x^7-2042055622656000 x^6-15315417169920000 x^5-76577085849600000 x^4-255256952832000000 x^3-546979184640000000 x^2-683723980800000000 x-379846656000000000\right ) \text {$\#$1}^9+\left (-59160657920 x^8-2366426316800 x^7-41412460544000 x^6-414124605440000 x^5-2588278784000000 x^4-10353115136000000 x^3-25882787840000000 x^2-36975411200000000 x-23109632000000000\right ) \text {$\#$1}^8+\left (2358771712 x^7+82557009920 x^6+1238355148800 x^5+10319626240000 x^4+51598131200000 x^3+154794393600000 x^2+257990656000000 x+184279040000000\right ) \text {$\#$1}^7+\left (265129984 x^6+7953899520 x^5+99423744000 x^4+662824960000 x^3+2485593600000 x^2+4971187200000 x+4142656000000\right ) \text {$\#$1}^6+\left (-14465024 x^5-361625600 x^4-3616256000 x^3-18081280000 x^2-45203200000 x-45203200000\right ) \text {$\#$1}^5+\left (-557312 x^4-11146240 x^3-83596800 x^2-278656000 x-348320000\right ) \text {$\#$1}^4+\left (44800 x^3+672000 x^2+3360000 x+5600000\right ) \text {$\#$1}^3+\left (112 x^2+1120 x+2800\right ) \text {$\#$1}^2+(-56 x-280) \text {$\#$1}+1\& ,12\right ]}-3\right )\right \},\left \{y(x)\to \frac {1}{21} \left (-9 x+\frac {1}{\text {Root}\left [\left (12824703626379264 x^{14}+897729253846548480 x^{13}+29176200750012825600 x^{12}+583524015000256512000 x^{11}+8023455206253527040000 x^{10}+80234552062535270400000 x^9+601759140469014528000000 x^8+3438623659822940160000000 x^7+15043978511725363200000000 x^6+50146595039084544000000000 x^5+125366487597711360000000000 x^4+227939068359475200000000000 x^3+284923835449344000000000000 x^2+219172181114880000000000000 x+12824703626379264 e^{168 c_1}+78275778969600000000000000\right ) \text {$\#$1}^{14}+\left (-467567319711744 x^{12}-28054039182704640 x^{11}-771486077524377600 x^{10}-12858101292072960000 x^9-144653639535820800000 x^8-1157229116286566400000 x^7-6750503178338304000000 x^6-28930727907164160000000 x^5-90408524709888000000000 x^4-200907832688640000000000 x^3-301361749032960000000000 x^2-273965226393600000000000 x-114152177664000000000000\right ) \text {$\#$1}^{12}+\left (6493990551552 x^{11}+357169480335360 x^{10}+8929237008384000 x^9+133938555125760000 x^8+1339385551257600000 x^7+9375698858803200000 x^6+46878494294016000000 x^5+167423193907200000000 x^4+418557984768000000000 x^3+697596641280000000000 x^2+697596641280000000000 x+317089382400000000000\right ) \text {$\#$1}^{11}+\left (7204270768128 x^{10}+360213538406400 x^9+8104804614144000 x^8+108064061521920000 x^7+945560538316800000 x^6+5673363229900800000 x^5+23639013457920000000 x^4+67540038451200000000 x^3+126637572096000000000 x^2+140708413440000000000 x+70354206720000000000\right ) \text {$\#$1}^{10}+\left (-194481487872 x^9-8751666954240 x^8-175033339084800 x^7-2042055622656000 x^6-15315417169920000 x^5-76577085849600000 x^4-255256952832000000 x^3-546979184640000000 x^2-683723980800000000 x-379846656000000000\right ) \text {$\#$1}^9+\left (-59160657920 x^8-2366426316800 x^7-41412460544000 x^6-414124605440000 x^5-2588278784000000 x^4-10353115136000000 x^3-25882787840000000 x^2-36975411200000000 x-23109632000000000\right ) \text {$\#$1}^8+\left (2358771712 x^7+82557009920 x^6+1238355148800 x^5+10319626240000 x^4+51598131200000 x^3+154794393600000 x^2+257990656000000 x+184279040000000\right ) \text {$\#$1}^7+\left (265129984 x^6+7953899520 x^5+99423744000 x^4+662824960000 x^3+2485593600000 x^2+4971187200000 x+4142656000000\right ) \text {$\#$1}^6+\left (-14465024 x^5-361625600 x^4-3616256000 x^3-18081280000 x^2-45203200000 x-45203200000\right ) \text {$\#$1}^5+\left (-557312 x^4-11146240 x^3-83596800 x^2-278656000 x-348320000\right ) \text {$\#$1}^4+\left (44800 x^3+672000 x^2+3360000 x+5600000\right ) \text {$\#$1}^3+\left (112 x^2+1120 x+2800\right ) \text {$\#$1}^2+(-56 x-280) \text {$\#$1}+1\& ,13\right ]}-3\right )\right \},\left \{y(x)\to \frac {1}{21} \left (-9 x+\frac {1}{\text {Root}\left [\left (12824703626379264 x^{14}+897729253846548480 x^{13}+29176200750012825600 x^{12}+583524015000256512000 x^{11}+8023455206253527040000 x^{10}+80234552062535270400000 x^9+601759140469014528000000 x^8+3438623659822940160000000 x^7+15043978511725363200000000 x^6+50146595039084544000000000 x^5+125366487597711360000000000 x^4+227939068359475200000000000 x^3+284923835449344000000000000 x^2+219172181114880000000000000 x+12824703626379264 e^{168 c_1}+78275778969600000000000000\right ) \text {$\#$1}^{14}+\left (-467567319711744 x^{12}-28054039182704640 x^{11}-771486077524377600 x^{10}-12858101292072960000 x^9-144653639535820800000 x^8-1157229116286566400000 x^7-6750503178338304000000 x^6-28930727907164160000000 x^5-90408524709888000000000 x^4-200907832688640000000000 x^3-301361749032960000000000 x^2-273965226393600000000000 x-114152177664000000000000\right ) \text {$\#$1}^{12}+\left (6493990551552 x^{11}+357169480335360 x^{10}+8929237008384000 x^9+133938555125760000 x^8+1339385551257600000 x^7+9375698858803200000 x^6+46878494294016000000 x^5+167423193907200000000 x^4+418557984768000000000 x^3+697596641280000000000 x^2+697596641280000000000 x+317089382400000000000\right ) \text {$\#$1}^{11}+\left (7204270768128 x^{10}+360213538406400 x^9+8104804614144000 x^8+108064061521920000 x^7+945560538316800000 x^6+5673363229900800000 x^5+23639013457920000000 x^4+67540038451200000000 x^3+126637572096000000000 x^2+140708413440000000000 x+70354206720000000000\right ) \text {$\#$1}^{10}+\left (-194481487872 x^9-8751666954240 x^8-175033339084800 x^7-2042055622656000 x^6-15315417169920000 x^5-76577085849600000 x^4-255256952832000000 x^3-546979184640000000 x^2-683723980800000000 x-379846656000000000\right ) \text {$\#$1}^9+\left (-59160657920 x^8-2366426316800 x^7-41412460544000 x^6-414124605440000 x^5-2588278784000000 x^4-10353115136000000 x^3-25882787840000000 x^2-36975411200000000 x-23109632000000000\right ) \text {$\#$1}^8+\left (2358771712 x^7+82557009920 x^6+1238355148800 x^5+10319626240000 x^4+51598131200000 x^3+154794393600000 x^2+257990656000000 x+184279040000000\right ) \text {$\#$1}^7+\left (265129984 x^6+7953899520 x^5+99423744000 x^4+662824960000 x^3+2485593600000 x^2+4971187200000 x+4142656000000\right ) \text {$\#$1}^6+\left (-14465024 x^5-361625600 x^4-3616256000 x^3-18081280000 x^2-45203200000 x-45203200000\right ) \text {$\#$1}^5+\left (-557312 x^4-11146240 x^3-83596800 x^2-278656000 x-348320000\right ) \text {$\#$1}^4+\left (44800 x^3+672000 x^2+3360000 x+5600000\right ) \text {$\#$1}^3+\left (112 x^2+1120 x+2800\right ) \text {$\#$1}^2+(-56 x-280) \text {$\#$1}+1\& ,14\right ]}-3\right )\right \}\right \}\]
Maple ✓
cpu = 0.03 (sec), leaf count = 47
\[ \left \{ -{\frac {3}{7}\ln \left ( {\frac {-y \left ( x \right ) -3-x}{5+x}} \right ) }-{\frac {4}{7}\ln \left ( {\frac {-3\,y \left ( x \right ) +11+x}{5+x}} \right ) }-\ln \left ( 5+x \right ) -{\it \_C1}=0 \right \} \] Mathematica raw input
DSolve[(3 + 9*x + 21*y[x])*y'[x] == 45 + 7*x - 5*y[x],y[x],x]
Mathematica raw output
{{y[x] -> (-3 - 9*x + Root[1 + (-280 - 56*x)*#1 + (2800 + 1120*x + 112*x^2)*#1^2 + (5600000 + 3360000*x + 672000*x^2 + 44800*x^3)*#1^3 + (-348320000 - 278656000*x - 83596800*x^2 - 11146240*x^3 - 557312*x^4)*#1^4 + (-45203200000 - 45203200000*x - 18081280000*x^2 - 3616256000*x^3 - 361625600*x^4 - 14465024*x^5)*#1^5 + (4142656000000 + 4971187200000*x + 2485593600000*x^2 + 662824960000*x^3 + 99423744000*x^4 + 7953899520*x^5 + 265129984*x^6)*#1^6 + (184279040000000 + 257990656000000*x + 154794393600000*x^2 + 51598131200000*x^3 + 10319626240000*x^4 + 1238355148800*x^5 + 82557009920*x^6 + 2358771712*x^7)*#1^7 + (-23109632000000000 - 36975411200000000*x - 25882787840000000*x^2 - 10353115136000000*x^3 - 2588278784000000*x^4 - 414124605440000*x^5 - 41412460544000*x^6 - 2366426316800*x^7 - 59160657920*x^8)*#1^8 + (-379846656000000000 - 683723980800000000*x - 546979184640000000*x^2 - 255256952832000000*x^3 - 76577085849600000*x^4 - 15315417169920000*x^5 - 2042055622656000*x^6 - 175033339084800*x^7 - 8751666954240*x^8 - 194481487872*x^9)*#1^9 + (70354206720000000000 + 140708413440000000000*x + 126637572096000000000*x^2 + 67540038451200000000*x^3 + 23639013457920000000*x^4 + 5673363229900800000*x^5 + 945560538316800000*x^6 + 108064061521920000*x^7 + 8104804614144000*x^8 + 360213538406400*x^9 + 7204270768128*x^10)*#1^10 + (317089382400000000000 + 697596641280000000000*x + 697596641280000000000*x^2 + 418557984768000000000*x^3 + 167423193907200000000*x^4 + 46878494294016000000*x^5 + 9375698858803200000*x^6 + 1339385551257600000*x^7 + 133938555125760000*x^8 + 8929237008384000*x^9 + 357169480335360*x^10 + 6493990551552*x^11)*#1^11 + (-114152177664000000000000 - 273965226393600000000000*x - 301361749032960000000000*x^2 - 200907832688640000000000*x^3 - 90408524709888000000000*x^4 - 28930727907164160000000*x^5 - 6750503178338304000000*x^6 - 1157229116286566400000*x^7 - 144653639535820800000*x^8 - 12858101292072960000*x^9 - 771486077524377600*x^10 - 28054039182704640*x^11 - 467567319711744*x^12)*#1^12 + (78275778969600000000000000 + 12824703626379264*E^(168*C[1]) + 219172181114880000000000000*x + 284923835449344000000000000*x^2 + 227939068359475200000000000*x^3 + 125366487597711360000000000*x^4 + 50146595039084544000000000*x^5 + 15043978511725363200000000*x^6 + 3438623659822940160000000*x^7 + 601759140469014528000000*x^8 + 80234552062535270400000*x^9 + 8023455206253527040000*x^10 + 583524015000256512000*x^11 + 29176200750012825600*x^12 + 897729253846548480*x^13 + 12824703626379264*x^14)*#1^14 & , 1]^(-1))/21}, {y[x] -> (-3 - 9*x + Root[1 + (-280 - 56*x)*#1 + (2800 + 1120*x + 112*x^2)*#1^2 + (5600000 + 3360000*x + 672000*x^2 + 44800*x^3)*#1^3 + (-348320000 - 278656000*x - 83596800*x^2 - 11146240*x^3 - 557312*x^4)*#1^4 + (-45203200000 - 45203200000*x - 18081280000*x^2 - 3616256000*x^3 - 361625600*x^4 - 14465024*x^5)*#1^5 + (4142656000000 + 4971187200000*x + 2485593600000*x^2 + 662824960000*x^3 + 99423744000*x^4 + 7953899520*x^5 + 265129984*x^6)*#1^6 + (184279040000000 + 257990656000000*x + 154794393600000*x^2 + 51598131200000*x^3 + 10319626240000*x^4 + 1238355148800*x^5 + 82557009920*x^6 + 2358771712*x^7)*#1^7 + (-23109632000000000 - 36975411200000000*x - 25882787840000000*x^2 - 10353115136000000*x^3 - 2588278784000000*x^4 - 414124605440000*x^5 - 41412460544000*x^6 - 2366426316800*x^7 - 59160657920*x^8)*#1^8 + (-379846656000000000 - 683723980800000000*x - 546979184640000000*x^2 - 255256952832000000*x^3 - 76577085849600000*x^4 - 15315417169920000*x^5 - 2042055622656000*x^6 - 175033339084800*x^7 - 8751666954240*x^8 - 194481487872*x^9)*#1^9 + (70354206720000000000 + 140708413440000000000*x + 126637572096000000000*x^2 + 67540038451200000000*x^3 + 23639013457920000000*x^4 + 5673363229900800000*x^5 + 945560538316800000*x^6 + 108064061521920000*x^7 + 8104804614144000*x^8 + 360213538406400*x^9 + 7204270768128*x^10)*#1^10 + (317089382400000000000 + 697596641280000000000*x + 697596641280000000000*x^2 + 418557984768000000000*x^3 + 167423193907200000000*x^4 + 46878494294016000000*x^5 + 9375698858803200000*x^6 + 1339385551257600000*x^7 + 133938555125760000*x^8 + 8929237008384000*x^9 + 357169480335360*x^10 + 6493990551552*x^11)*#1^11 + (-114152177664000000000000 - 273965226393600000000000*x - 301361749032960000000000*x^2 - 200907832688640000000000*x^3 - 90408524709888000000000*x^4 - 28930727907164160000000*x^5 - 6750503178338304000000*x^6 - 1157229116286566400000*x^7 - 144653639535820800000*x^8 - 12858101292072960000*x^9 - 771486077524377600*x^10 - 28054039182704640*x^11 - 467567319711744*x^12)*#1^12 + (78275778969600000000000000 + 12824703626379264*E^(168*C[1]) + 219172181114880000000000000*x + 284923835449344000000000000*x^2 + 227939068359475200000000000*x^3 + 125366487597711360000000000*x^4 + 50146595039084544000000000*x^5 + 15043978511725363200000000*x^6 + 3438623659822940160000000*x^7 + 601759140469014528000000*x^8 + 80234552062535270400000*x^9 + 8023455206253527040000*x^10 + 583524015000256512000*x^11 + 29176200750012825600*x^12 + 897729253846548480*x^13 + 12824703626379264*x^14)*#1^14 & , 2]^(-1))/21}, {y[x] -> (-3 - 9*x + Root[1 + (-280 - 56*x)*#1 + (2800 + 1120*x + 112*x^2)*#1^2 + (5600000 + 3360000*x + 672000*x^2 + 44800*x^3)*#1^3 + (-348320000 - 278656000*x - 83596800*x^2 - 11146240*x^3 - 557312*x^4)*#1^4 + (-45203200000 - 45203200000*x - 18081280000*x^2 - 3616256000*x^3 - 361625600*x^4 - 14465024*x^5)*#1^5 + (4142656000000 + 4971187200000*x + 2485593600000*x^2 + 662824960000*x^3 + 99423744000*x^4 + 7953899520*x^5 + 265129984*x^6)*#1^6 + (184279040000000 + 257990656000000*x + 154794393600000*x^2 + 51598131200000*x^3 + 10319626240000*x^4 + 1238355148800*x^5 + 82557009920*x^6 + 2358771712*x^7)*#1^7 + (-23109632000000000 - 36975411200000000*x - 25882787840000000*x^2 - 10353115136000000*x^3 - 2588278784000000*x^4 - 414124605440000*x^5 - 41412460544000*x^6 - 2366426316800*x^7 - 59160657920*x^8)*#1^8 + (-379846656000000000 - 683723980800000000*x - 546979184640000000*x^2 - 255256952832000000*x^3 - 76577085849600000*x^4 - 15315417169920000*x^5 - 2042055622656000*x^6 - 175033339084800*x^7 - 8751666954240*x^8 - 194481487872*x^9)*#1^9 + (70354206720000000000 + 140708413440000000000*x + 126637572096000000000*x^2 + 67540038451200000000*x^3 + 23639013457920000000*x^4 + 5673363229900800000*x^5 + 945560538316800000*x^6 + 108064061521920000*x^7 + 8104804614144000*x^8 + 360213538406400*x^9 + 7204270768128*x^10)*#1^10 + (317089382400000000000 + 697596641280000000000*x + 697596641280000000000*x^2 + 418557984768000000000*x^3 + 167423193907200000000*x^4 + 46878494294016000000*x^5 + 9375698858803200000*x^6 + 1339385551257600000*x^7 + 133938555125760000*x^8 + 8929237008384000*x^9 + 357169480335360*x^10 + 6493990551552*x^11)*#1^11 + (-114152177664000000000000 - 273965226393600000000000*x - 301361749032960000000000*x^2 - 200907832688640000000000*x^3 - 90408524709888000000000*x^4 - 28930727907164160000000*x^5 - 6750503178338304000000*x^6 - 1157229116286566400000*x^7 - 144653639535820800000*x^8 - 12858101292072960000*x^9 - 771486077524377600*x^10 - 28054039182704640*x^11 - 467567319711744*x^12)*#1^12 + (78275778969600000000000000 + 12824703626379264*E^(168*C[1]) + 219172181114880000000000000*x + 284923835449344000000000000*x^2 + 227939068359475200000000000*x^3 + 125366487597711360000000000*x^4 + 50146595039084544000000000*x^5 + 15043978511725363200000000*x^6 + 3438623659822940160000000*x^7 + 601759140469014528000000*x^8 + 80234552062535270400000*x^9 + 8023455206253527040000*x^10 + 583524015000256512000*x^11 + 29176200750012825600*x^12 + 897729253846548480*x^13 + 12824703626379264*x^14)*#1^14 & , 3]^(-1))/21}, {y[x] -> (-3 - 9*x + Root[1 + (-280 - 56*x)*#1 + (2800 + 1120*x + 112*x^2)*#1^2 + (5600000 + 3360000*x + 672000*x^2 + 44800*x^3)*#1^3 + (-348320000 - 278656000*x - 83596800*x^2 - 11146240*x^3 - 557312*x^4)*#1^4 + (-45203200000 - 45203200000*x - 18081280000*x^2 - 3616256000*x^3 - 361625600*x^4 - 14465024*x^5)*#1^5 + (4142656000000 + 4971187200000*x + 2485593600000*x^2 + 662824960000*x^3 + 99423744000*x^4 + 7953899520*x^5 + 265129984*x^6)*#1^6 + (184279040000000 + 257990656000000*x + 154794393600000*x^2 + 51598131200000*x^3 + 10319626240000*x^4 + 1238355148800*x^5 + 82557009920*x^6 + 2358771712*x^7)*#1^7 + (-23109632000000000 - 36975411200000000*x - 25882787840000000*x^2 - 10353115136000000*x^3 - 2588278784000000*x^4 - 414124605440000*x^5 - 41412460544000*x^6 - 2366426316800*x^7 - 59160657920*x^8)*#1^8 + (-379846656000000000 - 683723980800000000*x - 546979184640000000*x^2 - 255256952832000000*x^3 - 76577085849600000*x^4 - 15315417169920000*x^5 - 2042055622656000*x^6 - 175033339084800*x^7 - 8751666954240*x^8 - 194481487872*x^9)*#1^9 + (70354206720000000000 + 140708413440000000000*x + 126637572096000000000*x^2 + 67540038451200000000*x^3 + 23639013457920000000*x^4 + 5673363229900800000*x^5 + 945560538316800000*x^6 + 108064061521920000*x^7 + 8104804614144000*x^8 + 360213538406400*x^9 + 7204270768128*x^10)*#1^10 + (317089382400000000000 + 697596641280000000000*x + 697596641280000000000*x^2 + 418557984768000000000*x^3 + 167423193907200000000*x^4 + 46878494294016000000*x^5 + 9375698858803200000*x^6 + 1339385551257600000*x^7 + 133938555125760000*x^8 + 8929237008384000*x^9 + 357169480335360*x^10 + 6493990551552*x^11)*#1^11 + (-114152177664000000000000 - 273965226393600000000000*x - 301361749032960000000000*x^2 - 200907832688640000000000*x^3 - 90408524709888000000000*x^4 - 28930727907164160000000*x^5 - 6750503178338304000000*x^6 - 1157229116286566400000*x^7 - 144653639535820800000*x^8 - 12858101292072960000*x^9 - 771486077524377600*x^10 - 28054039182704640*x^11 - 467567319711744*x^12)*#1^12 + (78275778969600000000000000 + 12824703626379264*E^(168*C[1]) + 219172181114880000000000000*x + 284923835449344000000000000*x^2 + 227939068359475200000000000*x^3 + 125366487597711360000000000*x^4 + 50146595039084544000000000*x^5 + 15043978511725363200000000*x^6 + 3438623659822940160000000*x^7 + 601759140469014528000000*x^8 + 80234552062535270400000*x^9 + 8023455206253527040000*x^10 + 583524015000256512000*x^11 + 29176200750012825600*x^12 + 897729253846548480*x^13 + 12824703626379264*x^14)*#1^14 & , 4]^(-1))/21}, {y[x] -> (-3 - 9*x + Root[1 + (-280 - 56*x)*#1 + (2800 + 1120*x + 112*x^2)*#1^2 + (5600000 + 3360000*x + 672000*x^2 + 44800*x^3)*#1^3 + (-348320000 - 278656000*x - 83596800*x^2 - 11146240*x^3 - 557312*x^4)*#1^4 + (-45203200000 - 45203200000*x - 18081280000*x^2 - 3616256000*x^3 - 361625600*x^4 - 14465024*x^5)*#1^5 + (4142656000000 + 4971187200000*x + 2485593600000*x^2 + 662824960000*x^3 + 99423744000*x^4 + 7953899520*x^5 + 265129984*x^6)*#1^6 + (184279040000000 + 257990656000000*x + 154794393600000*x^2 + 51598131200000*x^3 + 10319626240000*x^4 + 1238355148800*x^5 + 82557009920*x^6 + 2358771712*x^7)*#1^7 + (-23109632000000000 - 36975411200000000*x - 25882787840000000*x^2 - 10353115136000000*x^3 - 2588278784000000*x^4 - 414124605440000*x^5 - 41412460544000*x^6 - 2366426316800*x^7 - 59160657920*x^8)*#1^8 + (-379846656000000000 - 683723980800000000*x - 546979184640000000*x^2 - 255256952832000000*x^3 - 76577085849600000*x^4 - 15315417169920000*x^5 - 2042055622656000*x^6 - 175033339084800*x^7 - 8751666954240*x^8 - 194481487872*x^9)*#1^9 + (70354206720000000000 + 140708413440000000000*x + 126637572096000000000*x^2 + 67540038451200000000*x^3 + 23639013457920000000*x^4 + 5673363229900800000*x^5 + 945560538316800000*x^6 + 108064061521920000*x^7 + 8104804614144000*x^8 + 360213538406400*x^9 + 7204270768128*x^10)*#1^10 + (317089382400000000000 + 697596641280000000000*x + 697596641280000000000*x^2 + 418557984768000000000*x^3 + 167423193907200000000*x^4 + 46878494294016000000*x^5 + 9375698858803200000*x^6 + 1339385551257600000*x^7 + 133938555125760000*x^8 + 8929237008384000*x^9 + 357169480335360*x^10 + 6493990551552*x^11)*#1^11 + (-114152177664000000000000 - 273965226393600000000000*x - 301361749032960000000000*x^2 - 200907832688640000000000*x^3 - 90408524709888000000000*x^4 - 28930727907164160000000*x^5 - 6750503178338304000000*x^6 - 1157229116286566400000*x^7 - 144653639535820800000*x^8 - 12858101292072960000*x^9 - 771486077524377600*x^10 - 28054039182704640*x^11 - 467567319711744*x^12)*#1^12 + (78275778969600000000000000 + 12824703626379264*E^(168*C[1]) + 219172181114880000000000000*x + 284923835449344000000000000*x^2 + 227939068359475200000000000*x^3 + 125366487597711360000000000*x^4 + 50146595039084544000000000*x^5 + 15043978511725363200000000*x^6 + 3438623659822940160000000*x^7 + 601759140469014528000000*x^8 + 80234552062535270400000*x^9 + 8023455206253527040000*x^10 + 583524015000256512000*x^11 + 29176200750012825600*x^12 + 897729253846548480*x^13 + 12824703626379264*x^14)*#1^14 & , 5]^(-1))/21}, {y[x] -> (-3 - 9*x + Root[1 + (-280 - 56*x)*#1 + (2800 + 1120*x + 112*x^2)*#1^2 + (5600000 + 3360000*x + 672000*x^2 + 44800*x^3)*#1^3 + (-348320000 - 278656000*x - 83596800*x^2 - 11146240*x^3 - 557312*x^4)*#1^4 + (-45203200000 - 45203200000*x - 18081280000*x^2 - 3616256000*x^3 - 361625600*x^4 - 14465024*x^5)*#1^5 + (4142656000000 + 4971187200000*x + 2485593600000*x^2 + 662824960000*x^3 + 99423744000*x^4 + 7953899520*x^5 + 265129984*x^6)*#1^6 + (184279040000000 + 257990656000000*x + 154794393600000*x^2 + 51598131200000*x^3 + 10319626240000*x^4 + 1238355148800*x^5 + 82557009920*x^6 + 2358771712*x^7)*#1^7 + (-23109632000000000 - 36975411200000000*x - 25882787840000000*x^2 - 10353115136000000*x^3 - 2588278784000000*x^4 - 414124605440000*x^5 - 41412460544000*x^6 - 2366426316800*x^7 - 59160657920*x^8)*#1^8 + (-379846656000000000 - 683723980800000000*x - 546979184640000000*x^2 - 255256952832000000*x^3 - 76577085849600000*x^4 - 15315417169920000*x^5 - 2042055622656000*x^6 - 175033339084800*x^7 - 8751666954240*x^8 - 194481487872*x^9)*#1^9 + (70354206720000000000 + 140708413440000000000*x + 126637572096000000000*x^2 + 67540038451200000000*x^3 + 23639013457920000000*x^4 + 5673363229900800000*x^5 + 945560538316800000*x^6 + 108064061521920000*x^7 + 8104804614144000*x^8 + 360213538406400*x^9 + 7204270768128*x^10)*#1^10 + (317089382400000000000 + 697596641280000000000*x + 697596641280000000000*x^2 + 418557984768000000000*x^3 + 167423193907200000000*x^4 + 46878494294016000000*x^5 + 9375698858803200000*x^6 + 1339385551257600000*x^7 + 133938555125760000*x^8 + 8929237008384000*x^9 + 357169480335360*x^10 + 6493990551552*x^11)*#1^11 + (-114152177664000000000000 - 273965226393600000000000*x - 301361749032960000000000*x^2 - 200907832688640000000000*x^3 - 90408524709888000000000*x^4 - 28930727907164160000000*x^5 - 6750503178338304000000*x^6 - 1157229116286566400000*x^7 - 144653639535820800000*x^8 - 12858101292072960000*x^9 - 771486077524377600*x^10 - 28054039182704640*x^11 - 467567319711744*x^12)*#1^12 + (78275778969600000000000000 + 12824703626379264*E^(168*C[1]) + 219172181114880000000000000*x + 284923835449344000000000000*x^2 + 227939068359475200000000000*x^3 + 125366487597711360000000000*x^4 + 50146595039084544000000000*x^5 + 15043978511725363200000000*x^6 + 3438623659822940160000000*x^7 + 601759140469014528000000*x^8 + 80234552062535270400000*x^9 + 8023455206253527040000*x^10 + 583524015000256512000*x^11 + 29176200750012825600*x^12 + 897729253846548480*x^13 + 12824703626379264*x^14)*#1^14 & , 6]^(-1))/21}, {y[x] -> (-3 - 9*x + Root[1 + (-280 - 56*x)*#1 + (2800 + 1120*x + 112*x^2)*#1^2 + (5600000 + 3360000*x + 672000*x^2 + 44800*x^3)*#1^3 + (-348320000 - 278656000*x - 83596800*x^2 - 11146240*x^3 - 557312*x^4)*#1^4 + (-45203200000 - 45203200000*x - 18081280000*x^2 - 3616256000*x^3 - 361625600*x^4 - 14465024*x^5)*#1^5 + (4142656000000 + 4971187200000*x + 2485593600000*x^2 + 662824960000*x^3 + 99423744000*x^4 + 7953899520*x^5 + 265129984*x^6)*#1^6 + (184279040000000 + 257990656000000*x + 154794393600000*x^2 + 51598131200000*x^3 + 10319626240000*x^4 + 1238355148800*x^5 + 82557009920*x^6 + 2358771712*x^7)*#1^7 + (-23109632000000000 - 36975411200000000*x - 25882787840000000*x^2 - 10353115136000000*x^3 - 2588278784000000*x^4 - 414124605440000*x^5 - 41412460544000*x^6 - 2366426316800*x^7 - 59160657920*x^8)*#1^8 + (-379846656000000000 - 683723980800000000*x - 546979184640000000*x^2 - 255256952832000000*x^3 - 76577085849600000*x^4 - 15315417169920000*x^5 - 2042055622656000*x^6 - 175033339084800*x^7 - 8751666954240*x^8 - 194481487872*x^9)*#1^9 + (70354206720000000000 + 140708413440000000000*x + 126637572096000000000*x^2 + 67540038451200000000*x^3 + 23639013457920000000*x^4 + 5673363229900800000*x^5 + 945560538316800000*x^6 + 108064061521920000*x^7 + 8104804614144000*x^8 + 360213538406400*x^9 + 7204270768128*x^10)*#1^10 + (317089382400000000000 + 697596641280000000000*x + 697596641280000000000*x^2 + 418557984768000000000*x^3 + 167423193907200000000*x^4 + 46878494294016000000*x^5 + 9375698858803200000*x^6 + 1339385551257600000*x^7 + 133938555125760000*x^8 + 8929237008384000*x^9 + 357169480335360*x^10 + 6493990551552*x^11)*#1^11 + (-114152177664000000000000 - 273965226393600000000000*x - 301361749032960000000000*x^2 - 200907832688640000000000*x^3 - 90408524709888000000000*x^4 - 28930727907164160000000*x^5 - 6750503178338304000000*x^6 - 1157229116286566400000*x^7 - 144653639535820800000*x^8 - 12858101292072960000*x^9 - 771486077524377600*x^10 - 28054039182704640*x^11 - 467567319711744*x^12)*#1^12 + (78275778969600000000000000 + 12824703626379264*E^(168*C[1]) + 219172181114880000000000000*x + 284923835449344000000000000*x^2 + 227939068359475200000000000*x^3 + 125366487597711360000000000*x^4 + 50146595039084544000000000*x^5 + 15043978511725363200000000*x^6 + 3438623659822940160000000*x^7 + 601759140469014528000000*x^8 + 80234552062535270400000*x^9 + 8023455206253527040000*x^10 + 583524015000256512000*x^11 + 29176200750012825600*x^12 + 897729253846548480*x^13 + 12824703626379264*x^14)*#1^14 & , 7]^(-1))/21}, {y[x] -> (-3 - 9*x + Root[1 + (-280 - 56*x)*#1 + (2800 + 1120*x + 112*x^2)*#1^2 + (5600000 + 3360000*x + 672000*x^2 + 44800*x^3)*#1^3 + (-348320000 - 278656000*x - 83596800*x^2 - 11146240*x^3 - 557312*x^4)*#1^4 + (-45203200000 - 45203200000*x - 18081280000*x^2 - 3616256000*x^3 - 361625600*x^4 - 14465024*x^5)*#1^5 + (4142656000000 + 4971187200000*x + 2485593600000*x^2 + 662824960000*x^3 + 99423744000*x^4 + 7953899520*x^5 + 265129984*x^6)*#1^6 + (184279040000000 + 257990656000000*x + 154794393600000*x^2 + 51598131200000*x^3 + 10319626240000*x^4 + 1238355148800*x^5 + 82557009920*x^6 + 2358771712*x^7)*#1^7 + (-23109632000000000 - 36975411200000000*x - 25882787840000000*x^2 - 10353115136000000*x^3 - 2588278784000000*x^4 - 414124605440000*x^5 - 41412460544000*x^6 - 2366426316800*x^7 - 59160657920*x^8)*#1^8 + (-379846656000000000 - 683723980800000000*x - 546979184640000000*x^2 - 255256952832000000*x^3 - 76577085849600000*x^4 - 15315417169920000*x^5 - 2042055622656000*x^6 - 175033339084800*x^7 - 8751666954240*x^8 - 194481487872*x^9)*#1^9 + (70354206720000000000 + 140708413440000000000*x + 126637572096000000000*x^2 + 67540038451200000000*x^3 + 23639013457920000000*x^4 + 5673363229900800000*x^5 + 945560538316800000*x^6 + 108064061521920000*x^7 + 8104804614144000*x^8 + 360213538406400*x^9 + 7204270768128*x^10)*#1^10 + (317089382400000000000 + 697596641280000000000*x + 697596641280000000000*x^2 + 418557984768000000000*x^3 + 167423193907200000000*x^4 + 46878494294016000000*x^5 + 9375698858803200000*x^6 + 1339385551257600000*x^7 + 133938555125760000*x^8 + 8929237008384000*x^9 + 357169480335360*x^10 + 6493990551552*x^11)*#1^11 + (-114152177664000000000000 - 273965226393600000000000*x - 301361749032960000000000*x^2 - 200907832688640000000000*x^3 - 90408524709888000000000*x^4 - 28930727907164160000000*x^5 - 6750503178338304000000*x^6 - 1157229116286566400000*x^7 - 144653639535820800000*x^8 - 12858101292072960000*x^9 - 771486077524377600*x^10 - 28054039182704640*x^11 - 467567319711744*x^12)*#1^12 + (78275778969600000000000000 + 12824703626379264*E^(168*C[1]) + 219172181114880000000000000*x + 284923835449344000000000000*x^2 + 227939068359475200000000000*x^3 + 125366487597711360000000000*x^4 + 50146595039084544000000000*x^5 + 15043978511725363200000000*x^6 + 3438623659822940160000000*x^7 + 601759140469014528000000*x^8 + 80234552062535270400000*x^9 + 8023455206253527040000*x^10 + 583524015000256512000*x^11 + 29176200750012825600*x^12 + 897729253846548480*x^13 + 12824703626379264*x^14)*#1^14 & , 8]^(-1))/21}, {y[x] -> (-3 - 9*x + Root[1 + (-280 - 56*x)*#1 + (2800 + 1120*x + 112*x^2)*#1^2 + (5600000 + 3360000*x + 672000*x^2 + 44800*x^3)*#1^3 + (-348320000 - 278656000*x - 83596800*x^2 - 11146240*x^3 - 557312*x^4)*#1^4 + (-45203200000 - 45203200000*x - 18081280000*x^2 - 3616256000*x^3 - 361625600*x^4 - 14465024*x^5)*#1^5 + (4142656000000 + 4971187200000*x + 2485593600000*x^2 + 662824960000*x^3 + 99423744000*x^4 + 7953899520*x^5 + 265129984*x^6)*#1^6 + (184279040000000 + 257990656000000*x + 154794393600000*x^2 + 51598131200000*x^3 + 10319626240000*x^4 + 1238355148800*x^5 + 82557009920*x^6 + 2358771712*x^7)*#1^7 + (-23109632000000000 - 36975411200000000*x - 25882787840000000*x^2 - 10353115136000000*x^3 - 2588278784000000*x^4 - 414124605440000*x^5 - 41412460544000*x^6 - 2366426316800*x^7 - 59160657920*x^8)*#1^8 + (-379846656000000000 - 683723980800000000*x - 546979184640000000*x^2 - 255256952832000000*x^3 - 76577085849600000*x^4 - 15315417169920000*x^5 - 2042055622656000*x^6 - 175033339084800*x^7 - 8751666954240*x^8 - 194481487872*x^9)*#1^9 + (70354206720000000000 + 140708413440000000000*x + 126637572096000000000*x^2 + 67540038451200000000*x^3 + 23639013457920000000*x^4 + 5673363229900800000*x^5 + 945560538316800000*x^6 + 108064061521920000*x^7 + 8104804614144000*x^8 + 360213538406400*x^9 + 7204270768128*x^10)*#1^10 + (317089382400000000000 + 697596641280000000000*x + 697596641280000000000*x^2 + 418557984768000000000*x^3 + 167423193907200000000*x^4 + 46878494294016000000*x^5 + 9375698858803200000*x^6 + 1339385551257600000*x^7 + 133938555125760000*x^8 + 8929237008384000*x^9 + 357169480335360*x^10 + 6493990551552*x^11)*#1^11 + (-114152177664000000000000 - 273965226393600000000000*x - 301361749032960000000000*x^2 - 200907832688640000000000*x^3 - 90408524709888000000000*x^4 - 28930727907164160000000*x^5 - 6750503178338304000000*x^6 - 1157229116286566400000*x^7 - 144653639535820800000*x^8 - 12858101292072960000*x^9 - 771486077524377600*x^10 - 28054039182704640*x^11 - 467567319711744*x^12)*#1^12 + (78275778969600000000000000 + 12824703626379264*E^(168*C[1]) + 219172181114880000000000000*x + 284923835449344000000000000*x^2 + 227939068359475200000000000*x^3 + 125366487597711360000000000*x^4 + 50146595039084544000000000*x^5 + 15043978511725363200000000*x^6 + 3438623659822940160000000*x^7 + 601759140469014528000000*x^8 + 80234552062535270400000*x^9 + 8023455206253527040000*x^10 + 583524015000256512000*x^11 + 29176200750012825600*x^12 + 897729253846548480*x^13 + 12824703626379264*x^14)*#1^14 & , 9]^(-1))/21}, {y[x] -> (-3 - 9*x + Root[1 + (-280 - 56*x)*#1 + (2800 + 1120*x + 112*x^2)*#1^2 + (5600000 + 3360000*x + 672000*x^2 + 44800*x^3)*#1^3 + (-348320000 - 278656000*x - 83596800*x^2 - 11146240*x^3 - 557312*x^4)*#1^4 + (-45203200000 - 45203200000*x - 18081280000*x^2 - 3616256000*x^3 - 361625600*x^4 - 14465024*x^5)*#1^5 + (4142656000000 + 4971187200000*x + 2485593600000*x^2 + 662824960000*x^3 + 99423744000*x^4 + 7953899520*x^5 + 265129984*x^6)*#1^6 + (184279040000000 + 257990656000000*x + 154794393600000*x^2 + 51598131200000*x^3 + 10319626240000*x^4 + 1238355148800*x^5 + 82557009920*x^6 + 2358771712*x^7)*#1^7 + (-23109632000000000 - 36975411200000000*x - 25882787840000000*x^2 - 10353115136000000*x^3 - 2588278784000000*x^4 - 414124605440000*x^5 - 41412460544000*x^6 - 2366426316800*x^7 - 59160657920*x^8)*#1^8 + (-379846656000000000 - 683723980800000000*x - 546979184640000000*x^2 - 255256952832000000*x^3 - 76577085849600000*x^4 - 15315417169920000*x^5 - 2042055622656000*x^6 - 175033339084800*x^7 - 8751666954240*x^8 - 194481487872*x^9)*#1^9 + (70354206720000000000 + 140708413440000000000*x + 126637572096000000000*x^2 + 67540038451200000000*x^3 + 23639013457920000000*x^4 + 5673363229900800000*x^5 + 945560538316800000*x^6 + 108064061521920000*x^7 + 8104804614144000*x^8 + 360213538406400*x^9 + 7204270768128*x^10)*#1^10 + (317089382400000000000 + 697596641280000000000*x + 697596641280000000000*x^2 + 418557984768000000000*x^3 + 167423193907200000000*x^4 + 46878494294016000000*x^5 + 9375698858803200000*x^6 + 1339385551257600000*x^7 + 133938555125760000*x^8 + 8929237008384000*x^9 + 357169480335360*x^10 + 6493990551552*x^11)*#1^11 + (-114152177664000000000000 - 273965226393600000000000*x - 301361749032960000000000*x^2 - 200907832688640000000000*x^3 - 90408524709888000000000*x^4 - 28930727907164160000000*x^5 - 6750503178338304000000*x^6 - 1157229116286566400000*x^7 - 144653639535820800000*x^8 - 12858101292072960000*x^9 - 771486077524377600*x^10 - 28054039182704640*x^11 - 467567319711744*x^12)*#1^12 + (78275778969600000000000000 + 12824703626379264*E^(168*C[1]) + 219172181114880000000000000*x + 284923835449344000000000000*x^2 + 227939068359475200000000000*x^3 + 125366487597711360000000000*x^4 + 50146595039084544000000000*x^5 + 15043978511725363200000000*x^6 + 3438623659822940160000000*x^7 + 601759140469014528000000*x^8 + 80234552062535270400000*x^9 + 8023455206253527040000*x^10 + 583524015000256512000*x^11 + 29176200750012825600*x^12 + 897729253846548480*x^13 + 12824703626379264*x^14)*#1^14 & , 10]^(-1))/21}, {y[x] -> (-3 - 9*x + Root[1 + (-280 - 56*x)*#1 + (2800 + 1120*x + 112*x^2)*#1^2 + (5600000 + 3360000*x + 672000*x^2 + 44800*x^3)*#1^3 + (-348320000 - 278656000*x - 83596800*x^2 - 11146240*x^3 - 557312*x^4)*#1^4 + (-45203200000 - 45203200000*x - 18081280000*x^2 - 3616256000*x^3 - 361625600*x^4 - 14465024*x^5)*#1^5 + (4142656000000 + 4971187200000*x + 2485593600000*x^2 + 662824960000*x^3 + 99423744000*x^4 + 7953899520*x^5 + 265129984*x^6)*#1^6 + (184279040000000 + 257990656000000*x + 154794393600000*x^2 + 51598131200000*x^3 + 10319626240000*x^4 + 1238355148800*x^5 + 82557009920*x^6 + 2358771712*x^7)*#1^7 + (-23109632000000000 - 36975411200000000*x - 25882787840000000*x^2 - 10353115136000000*x^3 - 2588278784000000*x^4 - 414124605440000*x^5 - 41412460544000*x^6 - 2366426316800*x^7 - 59160657920*x^8)*#1^8 + (-379846656000000000 - 683723980800000000*x - 546979184640000000*x^2 - 255256952832000000*x^3 - 76577085849600000*x^4 - 15315417169920000*x^5 - 2042055622656000*x^6 - 175033339084800*x^7 - 8751666954240*x^8 - 194481487872*x^9)*#1^9 + (70354206720000000000 + 140708413440000000000*x + 126637572096000000000*x^2 + 67540038451200000000*x^3 + 23639013457920000000*x^4 + 5673363229900800000*x^5 + 945560538316800000*x^6 + 108064061521920000*x^7 + 8104804614144000*x^8 + 360213538406400*x^9 + 7204270768128*x^10)*#1^10 + (317089382400000000000 + 697596641280000000000*x + 697596641280000000000*x^2 + 418557984768000000000*x^3 + 167423193907200000000*x^4 + 46878494294016000000*x^5 + 9375698858803200000*x^6 + 1339385551257600000*x^7 + 133938555125760000*x^8 + 8929237008384000*x^9 + 357169480335360*x^10 + 6493990551552*x^11)*#1^11 + (-114152177664000000000000 - 273965226393600000000000*x - 301361749032960000000000*x^2 - 200907832688640000000000*x^3 - 90408524709888000000000*x^4 - 28930727907164160000000*x^5 - 6750503178338304000000*x^6 - 1157229116286566400000*x^7 - 144653639535820800000*x^8 - 12858101292072960000*x^9 - 771486077524377600*x^10 - 28054039182704640*x^11 - 467567319711744*x^12)*#1^12 + (78275778969600000000000000 + 12824703626379264*E^(168*C[1]) + 219172181114880000000000000*x + 284923835449344000000000000*x^2 + 227939068359475200000000000*x^3 + 125366487597711360000000000*x^4 + 50146595039084544000000000*x^5 + 15043978511725363200000000*x^6 + 3438623659822940160000000*x^7 + 601759140469014528000000*x^8 + 80234552062535270400000*x^9 + 8023455206253527040000*x^10 + 583524015000256512000*x^11 + 29176200750012825600*x^12 + 897729253846548480*x^13 + 12824703626379264*x^14)*#1^14 & , 11]^(-1))/21}, {y[x] -> (-3 - 9*x + Root[1 + (-280 - 56*x)*#1 + (2800 + 1120*x + 112*x^2)*#1^2 + (5600000 + 3360000*x + 672000*x^2 + 44800*x^3)*#1^3 + (-348320000 - 278656000*x - 83596800*x^2 - 11146240*x^3 - 557312*x^4)*#1^4 + (-45203200000 - 45203200000*x - 18081280000*x^2 - 3616256000*x^3 - 361625600*x^4 - 14465024*x^5)*#1^5 + (4142656000000 + 4971187200000*x + 2485593600000*x^2 + 662824960000*x^3 + 99423744000*x^4 + 7953899520*x^5 + 265129984*x^6)*#1^6 + (184279040000000 + 257990656000000*x + 154794393600000*x^2 + 51598131200000*x^3 + 10319626240000*x^4 + 1238355148800*x^5 + 82557009920*x^6 + 2358771712*x^7)*#1^7 + (-23109632000000000 - 36975411200000000*x - 25882787840000000*x^2 - 10353115136000000*x^3 - 2588278784000000*x^4 - 414124605440000*x^5 - 41412460544000*x^6 - 2366426316800*x^7 - 59160657920*x^8)*#1^8 + (-379846656000000000 - 683723980800000000*x - 546979184640000000*x^2 - 255256952832000000*x^3 - 76577085849600000*x^4 - 15315417169920000*x^5 - 2042055622656000*x^6 - 175033339084800*x^7 - 8751666954240*x^8 - 194481487872*x^9)*#1^9 + (70354206720000000000 + 140708413440000000000*x + 126637572096000000000*x^2 + 67540038451200000000*x^3 + 23639013457920000000*x^4 + 5673363229900800000*x^5 + 945560538316800000*x^6 + 108064061521920000*x^7 + 8104804614144000*x^8 + 360213538406400*x^9 + 7204270768128*x^10)*#1^10 + (317089382400000000000 + 697596641280000000000*x + 697596641280000000000*x^2 + 418557984768000000000*x^3 + 167423193907200000000*x^4 + 46878494294016000000*x^5 + 9375698858803200000*x^6 + 1339385551257600000*x^7 + 133938555125760000*x^8 + 8929237008384000*x^9 + 357169480335360*x^10 + 6493990551552*x^11)*#1^11 + (-114152177664000000000000 - 273965226393600000000000*x - 301361749032960000000000*x^2 - 200907832688640000000000*x^3 - 90408524709888000000000*x^4 - 28930727907164160000000*x^5 - 6750503178338304000000*x^6 - 1157229116286566400000*x^7 - 144653639535820800000*x^8 - 12858101292072960000*x^9 - 771486077524377600*x^10 - 28054039182704640*x^11 - 467567319711744*x^12)*#1^12 + (78275778969600000000000000 + 12824703626379264*E^(168*C[1]) + 219172181114880000000000000*x + 284923835449344000000000000*x^2 + 227939068359475200000000000*x^3 + 125366487597711360000000000*x^4 + 50146595039084544000000000*x^5 + 15043978511725363200000000*x^6 + 3438623659822940160000000*x^7 + 601759140469014528000000*x^8 + 80234552062535270400000*x^9 + 8023455206253527040000*x^10 + 583524015000256512000*x^11 + 29176200750012825600*x^12 + 897729253846548480*x^13 + 12824703626379264*x^14)*#1^14 & , 12]^(-1))/21}, {y[x] -> (-3 - 9*x + Root[1 + (-280 - 56*x)*#1 + (2800 + 1120*x + 112*x^2)*#1^2 + (5600000 + 3360000*x + 672000*x^2 + 44800*x^3)*#1^3 + (-348320000 - 278656000*x - 83596800*x^2 - 11146240*x^3 - 557312*x^4)*#1^4 + (-45203200000 - 45203200000*x - 18081280000*x^2 - 3616256000*x^3 - 361625600*x^4 - 14465024*x^5)*#1^5 + (4142656000000 + 4971187200000*x + 2485593600000*x^2 + 662824960000*x^3 + 99423744000*x^4 + 7953899520*x^5 + 265129984*x^6)*#1^6 + (184279040000000 + 257990656000000*x + 154794393600000*x^2 + 51598131200000*x^3 + 10319626240000*x^4 + 1238355148800*x^5 + 82557009920*x^6 + 2358771712*x^7)*#1^7 + (-23109632000000000 - 36975411200000000*x - 25882787840000000*x^2 - 10353115136000000*x^3 - 2588278784000000*x^4 - 414124605440000*x^5 - 41412460544000*x^6 - 2366426316800*x^7 - 59160657920*x^8)*#1^8 + (-379846656000000000 - 683723980800000000*x - 546979184640000000*x^2 - 255256952832000000*x^3 - 76577085849600000*x^4 - 15315417169920000*x^5 - 2042055622656000*x^6 - 175033339084800*x^7 - 8751666954240*x^8 - 194481487872*x^9)*#1^9 + (70354206720000000000 + 140708413440000000000*x + 126637572096000000000*x^2 + 67540038451200000000*x^3 + 23639013457920000000*x^4 + 5673363229900800000*x^5 + 945560538316800000*x^6 + 108064061521920000*x^7 + 8104804614144000*x^8 + 360213538406400*x^9 + 7204270768128*x^10)*#1^10 + (317089382400000000000 + 697596641280000000000*x + 697596641280000000000*x^2 + 418557984768000000000*x^3 + 167423193907200000000*x^4 + 46878494294016000000*x^5 + 9375698858803200000*x^6 + 1339385551257600000*x^7 + 133938555125760000*x^8 + 8929237008384000*x^9 + 357169480335360*x^10 + 6493990551552*x^11)*#1^11 + (-114152177664000000000000 - 273965226393600000000000*x - 301361749032960000000000*x^2 - 200907832688640000000000*x^3 - 90408524709888000000000*x^4 - 28930727907164160000000*x^5 - 6750503178338304000000*x^6 - 1157229116286566400000*x^7 - 144653639535820800000*x^8 - 12858101292072960000*x^9 - 771486077524377600*x^10 - 28054039182704640*x^11 - 467567319711744*x^12)*#1^12 + (78275778969600000000000000 + 12824703626379264*E^(168*C[1]) + 219172181114880000000000000*x + 284923835449344000000000000*x^2 + 227939068359475200000000000*x^3 + 125366487597711360000000000*x^4 + 50146595039084544000000000*x^5 + 15043978511725363200000000*x^6 + 3438623659822940160000000*x^7 + 601759140469014528000000*x^8 + 80234552062535270400000*x^9 + 8023455206253527040000*x^10 + 583524015000256512000*x^11 + 29176200750012825600*x^12 + 897729253846548480*x^13 + 12824703626379264*x^14)*#1^14 & , 13]^(-1))/21}, {y[x] -> (-3 - 9*x + Root[1 + (-280 - 56*x)*#1 + (2800 + 1120*x + 112*x^2)*#1^2 + (5600000 + 3360000*x + 672000*x^2 + 44800*x^3)*#1^3 + (-348320000 - 278656000*x - 83596800*x^2 - 11146240*x^3 - 557312*x^4)*#1^4 + (-45203200000 - 45203200000*x - 18081280000*x^2 - 3616256000*x^3 - 361625600*x^4 - 14465024*x^5)*#1^5 + (4142656000000 + 4971187200000*x + 2485593600000*x^2 + 662824960000*x^3 + 99423744000*x^4 + 7953899520*x^5 + 265129984*x^6)*#1^6 + (184279040000000 + 257990656000000*x + 154794393600000*x^2 + 51598131200000*x^3 + 10319626240000*x^4 + 1238355148800*x^5 + 82557009920*x^6 + 2358771712*x^7)*#1^7 + (-23109632000000000 - 36975411200000000*x - 25882787840000000*x^2 - 10353115136000000*x^3 - 2588278784000000*x^4 - 414124605440000*x^5 - 41412460544000*x^6 - 2366426316800*x^7 - 59160657920*x^8)*#1^8 + (-379846656000000000 - 683723980800000000*x - 546979184640000000*x^2 - 255256952832000000*x^3 - 76577085849600000*x^4 - 15315417169920000*x^5 - 2042055622656000*x^6 - 175033339084800*x^7 - 8751666954240*x^8 - 194481487872*x^9)*#1^9 + (70354206720000000000 + 140708413440000000000*x + 126637572096000000000*x^2 + 67540038451200000000*x^3 + 23639013457920000000*x^4 + 5673363229900800000*x^5 + 945560538316800000*x^6 + 108064061521920000*x^7 + 8104804614144000*x^8 + 360213538406400*x^9 + 7204270768128*x^10)*#1^10 + (317089382400000000000 + 697596641280000000000*x + 697596641280000000000*x^2 + 418557984768000000000*x^3 + 167423193907200000000*x^4 + 46878494294016000000*x^5 + 9375698858803200000*x^6 + 1339385551257600000*x^7 + 133938555125760000*x^8 + 8929237008384000*x^9 + 357169480335360*x^10 + 6493990551552*x^11)*#1^11 + (-114152177664000000000000 - 273965226393600000000000*x - 301361749032960000000000*x^2 - 200907832688640000000000*x^3 - 90408524709888000000000*x^4 - 28930727907164160000000*x^5 - 6750503178338304000000*x^6 - 1157229116286566400000*x^7 - 144653639535820800000*x^8 - 12858101292072960000*x^9 - 771486077524377600*x^10 - 28054039182704640*x^11 - 467567319711744*x^12)*#1^12 + (78275778969600000000000000 + 12824703626379264*E^(168*C[1]) + 219172181114880000000000000*x + 284923835449344000000000000*x^2 + 227939068359475200000000000*x^3 + 125366487597711360000000000*x^4 + 50146595039084544000000000*x^5 + 15043978511725363200000000*x^6 + 3438623659822940160000000*x^7 + 601759140469014528000000*x^8 + 80234552062535270400000*x^9 + 8023455206253527040000*x^10 + 583524015000256512000*x^11 + 29176200750012825600*x^12 + 897729253846548480*x^13 + 12824703626379264*x^14)*#1^14 & , 14]^(-1))/21}}
Maple raw input
dsolve((3+9*x+21*y(x))*diff(y(x),x) = 45+7*x-5*y(x), y(x),'implicit')
Maple raw output
-3/7*ln((-y(x)-3-x)/(5+x))-4/7*ln((-3*y(x)+11+x)/(5+x))-ln(5+x)-_C1 = 0