Internal
problem
ID
[8963]
Book
:
Own
collection
of
miscellaneous
problems
Section
:
section
5.0
Problem
number
:
2
Date
solved
:
Sunday, March 30, 2025 at 01:57:25 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=diff(diff(y(x),x),x)+2*x*diff(y(x),x)+(x^2+1)*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=D[y[x],{x,2}]+2*x*D[y[x],x]+(x^2+1)*y[x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(2*x*Derivative(y(x), x) + (x**2 + 1)*y(x) + Derivative(y(x), (x, 2)),0) ics = {} dsolve(ode,func=y(x),ics=ics)
False