56.5.2 problem 2

Internal problem ID [8963]
Book : Own collection of miscellaneous problems
Section : section 5.0
Problem number : 2
Date solved : Sunday, March 30, 2025 at 01:57:25 PM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} y^{\prime \prime }+2 x y^{\prime }+\left (x^{2}+1\right ) y&=0 \end{align*}

Maple. Time used: 0.002 (sec). Leaf size: 16
ode:=diff(diff(y(x),x),x)+2*x*diff(y(x),x)+(x^2+1)*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = {\mathrm e}^{-\frac {x^{2}}{2}} \left (c_2 x +c_1 \right ) \]
Mathematica. Time used: 0.024 (sec). Leaf size: 22
ode=D[y[x],{x,2}]+2*x*D[y[x],x]+(x^2+1)*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to e^{-\frac {x^2}{2}} (c_2 x+c_1) \]
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(2*x*Derivative(y(x), x) + (x**2 + 1)*y(x) + Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
False