56.4.70 problem 67
Internal
problem
ID
[8959]
Book
:
Own
collection
of
miscellaneous
problems
Section
:
section
4.0
Problem
number
:
67
Date
solved
:
Sunday, March 30, 2025 at 01:56:29 PM
CAS
classification
:
system_of_ODEs
\begin{align*} \frac {d}{d t}x \left (t \right )&=x \left (t \right )+2 y \left (t \right )+2 t +1\\ \frac {d}{d t}y \left (t \right )&=5 x \left (t \right )+y \left (t \right )+3 t -1 \end{align*}
✓ Maple. Time used: 0.127 (sec). Leaf size: 67
ode:=[diff(x(t),t) = x(t)+2*y(t)+2*t+1, diff(y(t),t) = 5*x(t)+y(t)+3*t-1];
dsolve(ode);
\begin{align*}
x \left (t \right ) &= {\mathrm e}^{\left (1+\sqrt {10}\right ) t} c_2 +{\mathrm e}^{-\left (-1+\sqrt {10}\right ) t} c_1 -\frac {4 t}{9}+\frac {17}{81} \\
y \left (t \right ) &= \frac {{\mathrm e}^{\left (1+\sqrt {10}\right ) t} c_2 \sqrt {10}}{2}-\frac {{\mathrm e}^{-\left (-1+\sqrt {10}\right ) t} c_1 \sqrt {10}}{2}-\frac {7 t}{9}-\frac {67}{81} \\
\end{align*}
✓ Mathematica. Time used: 11.167 (sec). Leaf size: 158
ode={D[x[t],t]==x[t]+2*y[t]+2*t+1,D[y[t],t]==5*x[t]+y[t]+3*t-1};
ic={};
DSolve[{ode,ic},{x[t],y[t]},t,IncludeSingularSolutions->True]
\begin{align*}
x(t)\to \frac {1}{810} e^{t-\sqrt {10} t} \left (e^{\left (\sqrt {10}-1\right ) t} (170-360 t)+81 \left (5 c_1+\sqrt {10} c_2\right ) e^{2 \sqrt {10} t}+81 \left (5 c_1-\sqrt {10} c_2\right )\right ) \\
y(t)\to \frac {1}{324} e^{t-\sqrt {10} t} \left (-4 e^{\left (\sqrt {10}-1\right ) t} (63 t+67)+81 \left (\sqrt {10} c_1+2 c_2\right ) e^{2 \sqrt {10} t}-81 \left (\sqrt {10} c_1-2 c_2\right )\right ) \\
\end{align*}
✓ Sympy. Time used: 0.466 (sec). Leaf size: 82
from sympy import *
t = symbols("t")
x = Function("x")
y = Function("y")
ode=[Eq(-2*t - x(t) - 2*y(t) + Derivative(x(t), t) - 1,0),Eq(-3*t - 5*x(t) - y(t) + Derivative(y(t), t) + 1,0)]
ics = {}
dsolve(ode,func=[x(t),y(t)],ics=ics)
\[
\left [ x{\left (t \right )} = \frac {\sqrt {10} C_{1} e^{t \left (1 + \sqrt {10}\right )}}{5} - \frac {\sqrt {10} C_{2} e^{t \left (1 - \sqrt {10}\right )}}{5} - \frac {4 t}{9} + \frac {17}{81}, \ y{\left (t \right )} = C_{1} e^{t \left (1 + \sqrt {10}\right )} + C_{2} e^{t \left (1 - \sqrt {10}\right )} - \frac {7 t}{9} - \frac {67}{81}\right ]
\]