Internal
problem
ID
[8937]
Book
:
Own
collection
of
miscellaneous
problems
Section
:
section
4.0
Problem
number
:
45
Date
solved
:
Sunday, March 30, 2025 at 01:55:50 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
Using series method with expansion around
Order:=6; ode:=x^2*diff(diff(y(x),x),x)+4*x*diff(y(x),x)+(x^2+2)*y(x) = 0; dsolve(ode,y(x),type='series',x=0);
ode=x^2*D[y[x],{x,2}]+4*x*D[y[x],x]+(x^2+2)*y[x]==0; ic={}; AsymptoticDSolveValue[{ode,ic},y[x],{x,0,5}]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x**2*Derivative(y(x), (x, 2)) + 4*x*Derivative(y(x), x) + (x**2 + 2)*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics,hint="2nd_power_series_regular",x0=0,n=6)