Internal
problem
ID
[8929]
Book
:
Own
collection
of
miscellaneous
problems
Section
:
section
4.0
Problem
number
:
37
Date
solved
:
Sunday, March 30, 2025 at 01:55:35 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
Using series method with expansion around
Order:=6; ode:=x^2*(x^2-2*x+1)*diff(diff(y(x),x),x)-x*(x+3)*diff(y(x),x)+(x+4)*y(x) = 0; dsolve(ode,y(x),type='series',x=0);
ode=x^2*(1-2*x+x^2)*D[y[x],{x,2}] -x*(3+x)*D[y[x],x]+(4+x)*y[x] == 0; ic={}; AsymptoticDSolveValue[{ode,ic},y[x],{x,0,5}]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x**2*(x**2 - 2*x + 1)*Derivative(y(x), (x, 2)) - x*(x + 3)*Derivative(y(x), x) + (x + 4)*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics,hint="2nd_power_series_regular",x0=0,n=6)