56.4.34 problem 31

Internal problem ID [8923]
Book : Own collection of miscellaneous problems
Section : section 4.0
Problem number : 31
Date solved : Sunday, March 30, 2025 at 01:55:25 PM
CAS classification : [[_Emden, _Fowler]]

\begin{align*} x^{2} y^{\prime \prime }+y&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}

Maple. Time used: 0.026 (sec). Leaf size: 32
Order:=6; 
ode:=x^2*diff(diff(y(x),x),x)+y(x) = 0; 
dsolve(ode,y(x),type='series',x=0);
 
\[ y = \sqrt {x}\, \left (c_1 \,x^{-\frac {i \sqrt {3}}{2}}+c_2 \,x^{\frac {i \sqrt {3}}{2}}\right )+O\left (x^{6}\right ) \]
Mathematica. Time used: 0.005 (sec). Leaf size: 26
ode=x^2*D[y[x],{x,2}] +y[x] == 0; 
ic={}; 
AsymptoticDSolveValue[{ode,ic},y[x],{x,0,5}]
 
\[ y(x)\to c_1 x^{-(-1)^{2/3}}+c_2 x^{\sqrt [3]{-1}} \]
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x**2*Derivative(y(x), (x, 2)) + y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics,hint="2nd_power_series_regular",x0=0,n=6)
 
ValueError : Expected Expr or iterable but got None