Internal
problem
ID
[8918]
Book
:
Own
collection
of
miscellaneous
problems
Section
:
section
4.0
Problem
number
:
25
Date
solved
:
Sunday, March 30, 2025 at 01:53:22 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
Using series method with expansion around
Order:=6; ode:=2*x^2*(x^2+x+1)*diff(diff(y(x),x),x)+x*(11*x^2+11*x+9)*diff(y(x),x)+(7*x^2+10*x+6)*y(x) = 0; dsolve(ode,y(x),type='series',x=0);
ode=2*x^2*(1+x+x^2)*D[y[x],{x,2}] + x*(9+11*x+11*x^2)*D[y[x],x] + (6+10*x+7*x^2)*y[x] == 0; ic={}; AsymptoticDSolveValue[{ode,ic},y[x],{x,0,5}]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(2*x**2*(x**2 + x + 1)*Derivative(y(x), (x, 2)) + x*(11*x**2 + 11*x + 9)*Derivative(y(x), x) + (7*x**2 + 10*x + 6)*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics,hint="2nd_power_series_regular",x0=0,n=6)