56.4.13 problem 13

Internal problem ID [8902]
Book : Own collection of miscellaneous problems
Section : section 4.0
Problem number : 13
Date solved : Sunday, March 30, 2025 at 01:52:52 PM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} x^{2} y^{\prime \prime }+\left (\cos \left (x \right )-1\right ) y^{\prime }+{\mathrm e}^{x} y&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}

Maple. Time used: 0.096 (sec). Leaf size: 300
Order:=6; 
ode:=x^2*diff(diff(y(x),x),x)+(-1+cos(x))*diff(y(x),x)+exp(x)*y(x) = 0; 
dsolve(ode,y(x),type='series',x=0);
 
\[ y = \sqrt {x}\, \left (c_2 \,x^{\frac {i \sqrt {3}}{2}} \left (1+\frac {1}{4} i \sqrt {3} x +\frac {-i \sqrt {3}-11}{32 i \sqrt {3}+64} x^{2}+\frac {\frac {55 \sqrt {3}}{288}+\frac {55 i}{96}}{\left (i-\sqrt {3}\right ) \left (i \sqrt {3}+2\right ) \left (i \sqrt {3}+3\right )} x^{3}+\frac {1}{384} \frac {112 i \sqrt {3}+199}{\left (-\sqrt {3}+2 i\right ) \left (i \sqrt {3}+4\right ) \left (i \sqrt {3}+3\right ) \left (-i+\sqrt {3}\right )} x^{4}+\frac {\frac {18491 \sqrt {3}}{38400}+\frac {4387 i}{12800}}{\left (-i+\sqrt {3}\right ) \left (i \sqrt {3}+2\right ) \left (i \sqrt {3}+3\right ) \left (i \sqrt {3}+4\right ) \left (i \sqrt {3}+5\right )} x^{5}+\operatorname {O}\left (x^{6}\right )\right )+c_1 \,x^{-\frac {i \sqrt {3}}{2}} \left (1-\frac {1}{4} i \sqrt {3} x +\frac {-\sqrt {3}-11 i}{32 \sqrt {3}+64 i} x^{2}+\frac {55 \sqrt {3}-165 i}{3456 i-2304 \sqrt {3}} x^{3}+\frac {199 i+112 \sqrt {3}}{-27648 i+7680 \sqrt {3}} x^{4}+\frac {\frac {18491 \sqrt {3}}{38400}-\frac {4387 i}{12800}}{\left (\sqrt {3}+i\right ) \left (\sqrt {3}+2 i\right ) \left (\sqrt {3}+3 i\right ) \left (\sqrt {3}+4 i\right ) \left (\sqrt {3}+5 i\right )} x^{5}+\operatorname {O}\left (x^{6}\right )\right )\right ) \]
Mathematica. Time used: 0.009 (sec). Leaf size: 2502
ode=x^2*D[y[x],{x,2}] + (Cos[x]-1)*D[y[x],x] + Exp[x]*y[x] ==0; 
ic={}; 
AsymptoticDSolveValue[{ode,ic},y[x],{x,0,5}]
 

Too large to display

Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x**2*Derivative(y(x), (x, 2)) + (cos(x) - 1)*Derivative(y(x), x) + y(x)*exp(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics,hint="2nd_power_series_regular",x0=0,n=6)
 
ValueError : ODE x**2*Derivative(y(x), (x, 2)) + (cos(x) - 1)*Derivative(y(x), x) + y(x)*exp(x) does not match hint 2nd_power_series_regular