56.4.2 problem 2

Internal problem ID [8891]
Book : Own collection of miscellaneous problems
Section : section 4.0
Problem number : 2
Date solved : Sunday, March 30, 2025 at 01:52:33 PM
CAS classification : [[_2nd_order, _linear, _nonhomogeneous]]

\begin{align*} 2 x^{2} y^{\prime \prime }-x y^{\prime }+\left (-x^{2}+1\right ) y&=1 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}

Maple. Time used: 0.022 (sec). Leaf size: 43
Order:=6; 
ode:=2*x^2*diff(diff(y(x),x),x)-x*diff(y(x),x)+(-x^2+1)*y(x) = 1; 
dsolve(ode,y(x),type='series',x=0);
 
\[ y = c_1 \sqrt {x}\, \left (1+\frac {1}{6} x^{2}+\frac {1}{168} x^{4}+\operatorname {O}\left (x^{6}\right )\right )+c_2 x \left (1+\frac {1}{10} x^{2}+\frac {1}{360} x^{4}+\operatorname {O}\left (x^{6}\right )\right )+\left (1+\frac {1}{3} x^{2}+\frac {1}{63} x^{4}+\operatorname {O}\left (x^{6}\right )\right ) \]
Mathematica. Time used: 0.028 (sec). Leaf size: 176
ode=2*x^2*D[y[x],{x,2}] - x*D[y[x],x] + (1-x^2 )*y[x] ==1; 
ic={}; 
AsymptoticDSolveValue[{ode,ic},y[x],{x,0,5}]
 
\[ y(x)\to c_2 x \left (\frac {x^6}{28080}+\frac {x^4}{360}+\frac {x^2}{10}+1\right )+c_1 \sqrt {x} \left (\frac {x^6}{11088}+\frac {x^4}{168}+\frac {x^2}{6}+1\right )+\sqrt {x} \left (-\frac {x^{11/2}}{154440}-\frac {x^{7/2}}{1260}-\frac {x^{3/2}}{15}+\frac {2}{\sqrt {x}}\right ) \left (\frac {x^6}{11088}+\frac {x^4}{168}+\frac {x^2}{6}+1\right )+x \left (\frac {x^5}{55440}+\frac {x^3}{504}+\frac {x}{6}-\frac {1}{x}\right ) \left (\frac {x^6}{28080}+\frac {x^4}{360}+\frac {x^2}{10}+1\right ) \]
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(2*x**2*Derivative(y(x), (x, 2)) - x*Derivative(y(x), x) + (1 - x**2)*y(x) - 1,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics,hint="2nd_power_series_regular",x0=0,n=6)
 
ValueError : ODE 2*x**2*Derivative(y(x), (x, 2)) - x*Derivative(y(x), x) + (1 - x**2)*y(x) - 1 does not match hint 2nd_power_series_regular