56.3.25 problem 25

Internal problem ID [8883]
Book : Own collection of miscellaneous problems
Section : section 3.0
Problem number : 25
Date solved : Sunday, March 30, 2025 at 01:52:14 PM
CAS classification : [[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

\begin{align*} \left (x^{2}+1\right ) y^{\prime \prime }+{y^{\prime }}^{2}&=0 \end{align*}

Maple. Time used: 0.021 (sec). Leaf size: 14
ode:=(x^2+1)*diff(diff(y(x),x),x)+diff(y(x),x)^2 = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \int \frac {1}{\arctan \left (x \right )+c_1}d x +c_2 \]
Mathematica. Time used: 60.287 (sec). Leaf size: 25
ode=(1+x^2)*D[y[x],{x,2}]+(D[y[x],x])^2==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to \int _1^x\frac {1}{\arctan (K[1])-c_1}dK[1]+c_2 \]
Sympy. Time used: 1.464 (sec). Leaf size: 24
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq((x**2 + 1)*Derivative(y(x), (x, 2)) + Derivative(y(x), x)**2,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ \left [ y{\left (x \right )} = C_{1} - \int \frac {1}{C_{2} - \operatorname {atan}{\left (x \right )}}\, dx, \ y{\left (x \right )} = C_{1} - \int \frac {1}{C_{2} - \operatorname {atan}{\left (x \right )}}\, dx\right ] \]