Internal
problem
ID
[8878]
Book
:
Own
collection
of
miscellaneous
problems
Section
:
section
3.0
Problem
number
:
20
Date
solved
:
Sunday, March 30, 2025 at 01:45:30 PM
CAS
classification
:
[[_high_order, _with_linear_symmetries]]
ode:=5*x^5*diff(diff(diff(diff(y(x),x),x),x),x)+4*x^4*diff(diff(diff(y(x),x),x),x)+x^2*diff(y(x),x)+x*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=5*x^5*D[y[x],{x,4}]+4*x^4*D[y[x],{x,3}]+x^2*D[y[x],x]+x*y[x]== Sin[x]; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
Too large to display
from sympy import * x = symbols("x") y = Function("y") ode = Eq(5*x**5*Derivative(y(x), (x, 4)) + 4*x**4*Derivative(y(x), (x, 3)) + x**2*Derivative(y(x), x) + x*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)