Internal
problem
ID
[8868]
Book
:
Own
collection
of
miscellaneous
problems
Section
:
section
3.0
Problem
number
:
10
Date
solved
:
Sunday, March 30, 2025 at 01:45:05 PM
CAS
classification
:
[[_2nd_order, _linear, _nonhomogeneous]]
With initial conditions
ode:=diff(diff(y(x),x),x)+y(x) = sin(x); ic:=D(y)(1) = 0, y(0) = 0; dsolve([ode,ic],y(x), singsol=all);
ode=D[y[x],{x,2}]+y[x]==Sin[x]; ic={Derivative[1][y][1] == 0,y[0]==0}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(y(x) - sin(x) + Derivative(y(x), (x, 2)),0) ics = {Subs(Derivative(y(x), x), x, 1): 0, y(0): 0} dsolve(ode,func=y(x),ics=ics)