56.2.54 problem 50

Internal problem ID [8858]
Book : Own collection of miscellaneous problems
Section : section 2.0
Problem number : 50
Date solved : Sunday, March 30, 2025 at 01:44:45 PM
CAS classification : [[_3rd_order, _with_linear_symmetries]]

\begin{align*} y^{\prime \prime \prime }-x^{3} y^{\prime }-x^{2} y-x^{3}&=0 \end{align*}

Maple. Time used: 0.007 (sec). Leaf size: 51
ode:=diff(diff(diff(y(x),x),x),x)-x^3*diff(y(x),x)-x^2*y(x)-x^3 = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = -\frac {x}{2}+c_1 \operatorname {hypergeom}\left (\left [\frac {1}{5}\right ], \left [\frac {3}{5}, \frac {4}{5}\right ], \frac {x^{5}}{25}\right )+c_2 x \operatorname {hypergeom}\left (\left [\frac {2}{5}\right ], \left [\frac {4}{5}, \frac {6}{5}\right ], \frac {x^{5}}{25}\right )+c_3 \,x^{2} \operatorname {hypergeom}\left (\left [\frac {3}{5}\right ], \left [\frac {6}{5}, \frac {7}{5}\right ], \frac {x^{5}}{25}\right ) \]
Mathematica. Time used: 10.995 (sec). Leaf size: 2548
ode=D[y[x],{x,3}]-x^3*D[y[x],x]-x^2*y[x]-x^3==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 

Too large to display

Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-x**3*Derivative(y(x), x) - x**3 - x**2*y(x) + Derivative(y(x), (x, 3)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
NotImplementedError : The given ODE Derivative(y(x), x) + 1 + y(x)/x - Derivative(y(x), (x, 3))/x**3 cannot be solved by the factorable group method