56.2.38 problem 37
Internal
problem
ID
[8842]
Book
:
Own
collection
of
miscellaneous
problems
Section
:
section
2.0
Problem
number
:
37
Date
solved
:
Sunday, March 30, 2025 at 01:41:49 PM
CAS
classification
:
[[_2nd_order, _linear, _nonhomogeneous]]
\begin{align*} y^{\prime \prime }-x^{2} y-x^{4}+2&=0 \end{align*}
✓ Maple. Time used: 0.004 (sec). Leaf size: 34
ode:=diff(diff(y(x),x),x)-x^2*y(x)-x^4+2 = 0;
dsolve(ode,y(x), singsol=all);
\[
y = \sqrt {x}\, \operatorname {BesselI}\left (\frac {1}{4}, \frac {x^{2}}{2}\right ) c_2 +\sqrt {x}\, \operatorname {BesselK}\left (\frac {1}{4}, \frac {x^{2}}{2}\right ) c_1 -x^{2}
\]
✓ Mathematica. Time used: 4.495 (sec). Leaf size: 217
ode=D[y[x],{x,2}]-x^2*y[x]-x^4+2==0;
ic={};
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
\[
y(x)\to \operatorname {ParabolicCylinderD}\left (-\frac {1}{2},\sqrt {2} x\right ) \left (\int _1^x-\frac {\left (K[1]^4-2\right ) \operatorname {ParabolicCylinderD}\left (-\frac {1}{2},i \sqrt {2} K[1]\right )}{\sqrt {2} \left (\operatorname {HermiteH}\left (-\frac {1}{2},i K[1]\right ) \operatorname {HermiteH}\left (\frac {1}{2},K[1]\right )+\operatorname {HermiteH}\left (-\frac {1}{2},K[1]\right ) \left (-i \operatorname {HermiteH}\left (\frac {1}{2},i K[1]\right )-2 \operatorname {HermiteH}\left (-\frac {1}{2},i K[1]\right ) K[1]\right )\right )}dK[1]+c_1\right )+\operatorname {ParabolicCylinderD}\left (-\frac {1}{2},i \sqrt {2} x\right ) \left (\int _1^x\frac {\left (K[2]^4-2\right ) \operatorname {ParabolicCylinderD}\left (-\frac {1}{2},\sqrt {2} K[2]\right )}{\sqrt {2} \left (\operatorname {HermiteH}\left (-\frac {1}{2},i K[2]\right ) \operatorname {HermiteH}\left (\frac {1}{2},K[2]\right )+\operatorname {HermiteH}\left (-\frac {1}{2},K[2]\right ) \left (-i \operatorname {HermiteH}\left (\frac {1}{2},i K[2]\right )-2 \operatorname {HermiteH}\left (-\frac {1}{2},i K[2]\right ) K[2]\right )\right )}dK[2]+c_2\right )
\]
✗ Sympy
from sympy import *
x = symbols("x")
y = Function("y")
ode = Eq(-x**4 - x**2*y(x) + Derivative(y(x), (x, 2)) + 2,0)
ics = {}
dsolve(ode,func=y(x),ics=ics)
NotImplementedError : solve: Cannot solve -x**4 - x**2*y(x) + Derivative(y(x), (x, 2)) + 2