56.2.24 problem 23

Internal problem ID [8828]
Book : Own collection of miscellaneous problems
Section : section 2.0
Problem number : 23
Date solved : Sunday, March 30, 2025 at 01:41:02 PM
CAS classification : [[_2nd_order, _linear, _nonhomogeneous]]

\begin{align*} y^{\prime \prime }-4 y^{\prime }-x y-x^{3}+2&=0 \end{align*}

Maple. Time used: 0.008 (sec). Leaf size: 31
ode:=diff(diff(y(x),x),x)-4*diff(y(x),x)-x*y(x)-x^3+2 = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = {\mathrm e}^{2 x} \operatorname {AiryAi}\left (4+x \right ) c_2 +{\mathrm e}^{2 x} \operatorname {AiryBi}\left (4+x \right ) c_1 -x^{2}+8 \]
Mathematica. Time used: 2.632 (sec). Leaf size: 89
ode=D[y[x],{x,2}]-4*D[y[x],x]-x*y[x]-x^3+2==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to e^{2 x} \left (\operatorname {AiryAi}(x+4) \int _1^x-e^{-2 K[1]} \pi \operatorname {AiryBi}(K[1]+4) \left (K[1]^3-2\right )dK[1]+\operatorname {AiryBi}(x+4) \int _1^xe^{-2 K[2]} \pi \operatorname {AiryAi}(K[2]+4) \left (K[2]^3-2\right )dK[2]+c_1 \operatorname {AiryAi}(x+4)+c_2 \operatorname {AiryBi}(x+4)\right ) \]
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-x**3 - x*y(x) - 4*Derivative(y(x), x) + Derivative(y(x), (x, 2)) + 2,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
NotImplementedError : The given ODE x**3/4 + x*y(x)/4 + Derivative(y(x), x) - Derivative(y(x), (x, 2))/4 - 1/2 cannot be solved by the factorable group method