56.2.14 problem 14

Internal problem ID [8818]
Book : Own collection of miscellaneous problems
Section : section 2.0
Problem number : 14
Date solved : Sunday, March 30, 2025 at 01:40:48 PM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} y^{\prime \prime }-y^{\prime }-x y-x&=0 \end{align*}

Maple. Time used: 0.008 (sec). Leaf size: 26
ode:=diff(diff(y(x),x),x)-diff(y(x),x)-x*y(x)-x = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = {\mathrm e}^{\frac {x}{2}} \operatorname {AiryAi}\left (\frac {1}{4}+x \right ) c_2 +{\mathrm e}^{\frac {x}{2}} \operatorname {AiryBi}\left (\frac {1}{4}+x \right ) c_1 -1 \]
Mathematica. Time used: 12.788 (sec). Leaf size: 99
ode=D[y[x],{x,2}]-D[y[x],x]-x*y[x]-x==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to e^{x/2} \left (\operatorname {AiryAi}\left (x+\frac {1}{4}\right ) \int _1^x-e^{-\frac {K[1]}{2}} \pi \operatorname {AiryBi}\left (K[1]+\frac {1}{4}\right ) K[1]dK[1]+\operatorname {AiryBi}\left (x+\frac {1}{4}\right ) \int _1^xe^{-\frac {K[2]}{2}} \pi \operatorname {AiryAi}\left (K[2]+\frac {1}{4}\right ) K[2]dK[2]+c_1 \operatorname {AiryAi}\left (x+\frac {1}{4}\right )+c_2 \operatorname {AiryBi}\left (x+\frac {1}{4}\right )\right ) \]
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-x*y(x) - x - Derivative(y(x), x) + Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
NotImplementedError : The given ODE x*y(x) + x + Derivative(y(x), x) - Derivative(y(x), (x, 2)) cannot be solved by the factorable group method