56.2.11 problem 11

Internal problem ID [8815]
Book : Own collection of miscellaneous problems
Section : section 2.0
Problem number : 11
Date solved : Sunday, March 30, 2025 at 01:40:43 PM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} y^{\prime \prime }-a x y^{\prime }-b x y-c x&=0 \end{align*}

Maple. Time used: 0.012 (sec). Leaf size: 83
ode:=diff(diff(y(x),x),x)-a*x*diff(y(x),x)-b*x*y(x)-c*x = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = {\mathrm e}^{-\frac {b x}{a}} \operatorname {KummerM}\left (-\frac {b^{2}}{2 a^{3}}, \frac {1}{2}, \frac {\left (x \,a^{2}+2 b \right )^{2}}{2 a^{3}}\right ) c_2 +{\mathrm e}^{-\frac {b x}{a}} \operatorname {KummerU}\left (-\frac {b^{2}}{2 a^{3}}, \frac {1}{2}, \frac {\left (x \,a^{2}+2 b \right )^{2}}{2 a^{3}}\right ) c_1 -\frac {c}{b} \]
Mathematica. Time used: 4.917 (sec). Leaf size: 565
ode=D[y[x],{x,2}]-a*x*D[y[x],x]-b*x*y[x]-c*x==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to e^{-\frac {b x}{a}} \left (\operatorname {HermiteH}\left (\frac {b^2}{a^3},\frac {x a^2+2 b}{\sqrt {2} a^{3/2}}\right ) \int _1^x\frac {a^4 c e^{\frac {b K[1]}{a}} \operatorname {Hypergeometric1F1}\left (-\frac {b^2}{2 a^3},\frac {1}{2},\frac {\left (K[1] a^2+2 b\right )^2}{2 a^3}\right ) K[1]}{b^2 \left (\sqrt {2} \operatorname {HermiteH}\left (\frac {b^2}{a^3}-1,\frac {K[1] a^2+2 b}{\sqrt {2} a^{3/2}}\right ) \operatorname {Hypergeometric1F1}\left (-\frac {b^2}{2 a^3},\frac {1}{2},\frac {\left (K[1] a^2+2 b\right )^2}{2 a^3}\right ) a^{3/2}+\operatorname {HermiteH}\left (\frac {b^2}{a^3},\frac {K[1] a^2+2 b}{\sqrt {2} a^{3/2}}\right ) \operatorname {Hypergeometric1F1}\left (1-\frac {b^2}{2 a^3},\frac {3}{2},\frac {\left (K[1] a^2+2 b\right )^2}{2 a^3}\right ) \left (K[1] a^2+2 b\right )\right )}dK[1]+\operatorname {Hypergeometric1F1}\left (-\frac {b^2}{2 a^3},\frac {1}{2},\frac {\left (x a^2+2 b\right )^2}{2 a^3}\right ) \int _1^x-\frac {a^4 c e^{\frac {b K[2]}{a}} \operatorname {HermiteH}\left (\frac {b^2}{a^3},\frac {K[2] a^2+2 b}{\sqrt {2} a^{3/2}}\right ) K[2]}{b^2 \left (\sqrt {2} \operatorname {HermiteH}\left (\frac {b^2}{a^3}-1,\frac {K[2] a^2+2 b}{\sqrt {2} a^{3/2}}\right ) \operatorname {Hypergeometric1F1}\left (-\frac {b^2}{2 a^3},\frac {1}{2},\frac {\left (K[2] a^2+2 b\right )^2}{2 a^3}\right ) a^{3/2}+\operatorname {HermiteH}\left (\frac {b^2}{a^3},\frac {K[2] a^2+2 b}{\sqrt {2} a^{3/2}}\right ) \operatorname {Hypergeometric1F1}\left (1-\frac {b^2}{2 a^3},\frac {3}{2},\frac {\left (K[2] a^2+2 b\right )^2}{2 a^3}\right ) \left (K[2] a^2+2 b\right )\right )}dK[2]+c_2 \operatorname {Hypergeometric1F1}\left (-\frac {b^2}{2 a^3},\frac {1}{2},\frac {\left (x a^2+2 b\right )^2}{2 a^3}\right )+c_1 \operatorname {HermiteH}\left (\frac {b^2}{a^3},\frac {x a^2+2 b}{\sqrt {2} a^{3/2}}\right )\right ) \]
Sympy
from sympy import * 
x = symbols("x") 
a = symbols("a") 
b = symbols("b") 
c = symbols("c") 
y = Function("y") 
ode = Eq(-a*x*Derivative(y(x), x) - b*x*y(x) - c*x + Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
NotImplementedError : The given ODE Derivative(y(x), x) - (-x*(b*y(x) + c) + Derivative(y(x), (x, 2)))/(a*x) cannot be solved by the factorable group method