Internal
problem
ID
[8802]
Book
:
Own
collection
of
miscellaneous
problems
Section
:
section
1.0
Problem
number
:
88
Date
solved
:
Sunday, March 30, 2025 at 01:40:07 PM
CAS
classification
:
[[_2nd_order, _missing_x]]
With initial conditions
ode:=diff(diff(y(x),x),x)+diff(y(x),x)+y(x) = 0; ic:=D(y)(0) = 0, y(0) = 1; dsolve([ode,ic],y(x), singsol=all);
ode=D[y[x],{x,2}]+D[y[x],x]+y[x]==0; ic={Derivative[1][y][0] ==0,y[0]==1}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(y(x) + Derivative(y(x), x) + Derivative(y(x), (x, 2)),0) ics = {Subs(Derivative(y(x), x), x, 0): 0, y(0): 1} dsolve(ode,func=y(x),ics=ics)