55.1.9 problem HW 5 problem 1(a)

Internal problem ID [8705]
Book : Selected problems from homeworks from different courses
Section : Math 2520, summer 2021. Differential Equations and Linear Algebra. Normandale college, Bloomington, Minnesota
Problem number : HW 5 problem 1(a)
Date solved : Sunday, March 30, 2025 at 01:24:11 PM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} y^{\prime \prime }-y^{\prime }-2 y&=5 \,{\mathrm e}^{2 x} \end{align*}

Maple. Time used: 0.004 (sec). Leaf size: 24
ode:=diff(diff(y(x),x),x)-diff(y(x),x)-2*y(x) = 5*exp(2*x); 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {\left (5 x +3 c_1 \right ) {\mathrm e}^{2 x}}{3}+{\mathrm e}^{-x} c_2 \]
Mathematica. Time used: 0.025 (sec). Leaf size: 31
ode=D[y[x],{x,2}]-D[y[x],x]-2*y[x]==5*Exp[2*x]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to c_1 e^{-x}+e^{2 x} \left (\frac {5 x}{3}-\frac {5}{9}+c_2\right ) \]
Sympy. Time used: 0.209 (sec). Leaf size: 19
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-2*y(x) - 5*exp(2*x) - Derivative(y(x), x) + Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{2} e^{- x} + \left (C_{1} + \frac {5 x}{3}\right ) e^{2 x} \]