Internal
problem
ID
[8689]
Book
:
Elementary
differential
equations.
Rainville,
Bedient,
Bedient.
Prentice
Hall.
NJ.
8th
edition.
1997.
Section
:
CHAPTER
18.
Power
series
solutions.
Miscellaneous
Exercises.
page
394
Problem
number
:
20
Date
solved
:
Sunday, March 30, 2025 at 01:23:38 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
Using series method with expansion around
Order:=8; ode:=x*diff(diff(y(x),x),x)+(-x^2+1)*diff(y(x),x)+2*x*y(x) = 0; dsolve(ode,y(x),type='series',x=0);
ode=x*D[y[x],{x,2}]+(1-x^2)*D[y[x],x]+2*x*y[x]==0; ic={}; AsymptoticDSolveValue[{ode,ic},y[x],{x,0,7}]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(2*x*y(x) + x*Derivative(y(x), (x, 2)) + (1 - x**2)*Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics,hint="2nd_power_series_regular",x0=0,n=8)