Internal
problem
ID
[8675]
Book
:
Elementary
differential
equations.
Rainville,
Bedient,
Bedient.
Prentice
Hall.
NJ.
8th
edition.
1997.
Section
:
CHAPTER
18.
Power
series
solutions.
Miscellaneous
Exercises.
page
394
Problem
number
:
5
Date
solved
:
Sunday, March 30, 2025 at 01:23:14 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
Using series method with expansion around
Order:=8; ode:=x^2*(x^2+1)*diff(diff(y(x),x),x)+2*x*(x^2+3)*diff(y(x),x)+6*y(x) = 0; dsolve(ode,y(x),type='series',x=0);
ode=x^2*(1+x^2)*D[y[x],{x,2}]+2*x*(3+x^2)*D[y[x],x]+6*y[x]==0; ic={}; AsymptoticDSolveValue[{ode,ic},y[x],{x,0,7}]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x**2*(x**2 + 1)*Derivative(y(x), (x, 2)) + 2*x*(x**2 + 3)*Derivative(y(x), x) + 6*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics,hint="2nd_power_series_regular",x0=0,n=8)