Internal
problem
ID
[8657]
Book
:
Elementary
differential
equations.
Rainville,
Bedient,
Bedient.
Prentice
Hall.
NJ.
8th
edition.
1997.
Section
:
CHAPTER
18.
Power
series
solutions.
18.9
Indicial
Equation
with
Difference
of
Roots
a
Positive
Integer:
Logarithmic
Case.
Exercises
page
384
Problem
number
:
10
(as
direct
Bessel)
Date
solved
:
Sunday, March 30, 2025 at 01:22:37 PM
CAS
classification
:
[_Bessel]
ode:=x^2*diff(diff(y(x),x),x)+x*diff(y(x),x)+(x^2-1)*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=x^2*D[y[x],{x,2}]+x*D[y[x],x]+(x^2-1)*y[x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x**2*Derivative(y(x), (x, 2)) + x*Derivative(y(x), x) + (x**2 - 1)*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)