54.7.1 problem 1

Internal problem ID [8649]
Book : Elementary differential equations. Rainville, Bedient, Bedient. Prentice Hall. NJ. 8th edition. 1997.
Section : CHAPTER 18. Power series solutions. 18.9 Indicial Equation with Difference of Roots a Positive Integer: Logarithmic Case. Exercises page 384
Problem number : 1
Date solved : Sunday, March 30, 2025 at 01:22:18 PM
CAS classification : [[_Emden, _Fowler]]

\begin{align*} x y^{\prime \prime }+y&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}

Maple. Time used: 0.024 (sec). Leaf size: 70
Order:=8; 
ode:=x*diff(diff(y(x),x),x)+y(x) = 0; 
dsolve(ode,y(x),type='series',x=0);
 
\[ y = c_1 x \left (1-\frac {1}{2} x +\frac {1}{12} x^{2}-\frac {1}{144} x^{3}+\frac {1}{2880} x^{4}-\frac {1}{86400} x^{5}+\frac {1}{3628800} x^{6}-\frac {1}{203212800} x^{7}+\operatorname {O}\left (x^{8}\right )\right )+c_2 \left (\ln \left (x \right ) \left (-x +\frac {1}{2} x^{2}-\frac {1}{12} x^{3}+\frac {1}{144} x^{4}-\frac {1}{2880} x^{5}+\frac {1}{86400} x^{6}-\frac {1}{3628800} x^{7}+\operatorname {O}\left (x^{8}\right )\right )+\left (1-\frac {3}{4} x^{2}+\frac {7}{36} x^{3}-\frac {35}{1728} x^{4}+\frac {101}{86400} x^{5}-\frac {7}{162000} x^{6}+\frac {283}{254016000} x^{7}+\operatorname {O}\left (x^{8}\right )\right )\right ) \]
Mathematica. Time used: 0.035 (sec). Leaf size: 119
ode=x*D[y[x],{x,2}]+y[x]==0; 
ic={}; 
AsymptoticDSolveValue[{ode,ic},y[x],{x,0,7}]
 
\[ y(x)\to c_1 \left (\frac {x \left (x^5-30 x^4+600 x^3-7200 x^2+43200 x-86400\right ) \log (x)}{86400}+\frac {-71 x^6+1965 x^5-35250 x^4+360000 x^3-1620000 x^2+1296000 x+1296000}{1296000}\right )+c_2 \left (\frac {x^7}{3628800}-\frac {x^6}{86400}+\frac {x^5}{2880}-\frac {x^4}{144}+\frac {x^3}{12}-\frac {x^2}{2}+x\right ) \]
Sympy. Time used: 0.711 (sec). Leaf size: 39
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x*Derivative(y(x), (x, 2)) + y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics,hint="2nd_power_series_regular",x0=0,n=8)
 
\[ y{\left (x \right )} = C_{1} x \left (\frac {x^{6}}{3628800} - \frac {x^{5}}{86400} + \frac {x^{4}}{2880} - \frac {x^{3}}{144} + \frac {x^{2}}{12} - \frac {x}{2} + 1\right ) + O\left (x^{8}\right ) \]