Internal
problem
ID
[8626]
Book
:
Elementary
differential
equations.
Rainville,
Bedient,
Bedient.
Prentice
Hall.
NJ.
8th
edition.
1997.
Section
:
CHAPTER
18.
Power
series
solutions.
18.6.
Indicial
Equation
with
Equal
Roots.
Exercises
page
373
Problem
number
:
11
(solved
as
direct
Bessel)
Date
solved
:
Sunday, March 30, 2025 at 01:21:38 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=x*diff(diff(y(x),x),x)+diff(y(x),x)-x*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=x*D[y[x],{x,2}]+D[y[x],x]-x*y[x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-x*y(x) + x*Derivative(y(x), (x, 2)) + Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)