Internal
problem
ID
[8615]
Book
:
Elementary
differential
equations.
Rainville,
Bedient,
Bedient.
Prentice
Hall.
NJ.
8th
edition.
1997.
Section
:
CHAPTER
18.
Power
series
solutions.
18.4
Indicial
Equation
with
Difference
of
Roots
Nonintegral.
Exercises
page
365
Problem
number
:
34
Date
solved
:
Sunday, March 30, 2025 at 01:21:20 PM
CAS
classification
:
[[_3rd_order, _with_linear_symmetries]]
ode:=x^3*diff(diff(diff(y(x),x),x),x)+4*x^2*diff(diff(y(x),x),x)-8*x*diff(y(x),x)+8*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=x^3*D[y[x],{x,3}]+4*x^2*D[y[x],{x,2}]-8*x*D[y[x],x]+8*y[x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x**3*Derivative(y(x), (x, 3)) + 4*x**2*Derivative(y(x), (x, 2)) - 8*x*Derivative(y(x), x) + 8*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)