Internal
problem
ID
[8469]
Book
:
Elementary
differential
equations.
By
Earl
D.
Rainville,
Phillip
E.
Bedient.
Macmilliam
Publishing
Co.
NY.
6th
edition.
1981.
Section
:
CHAPTER
16.
Nonlinear
equations.
Section
99.
Clairaut
equation.
EXERCISES
Page
320
Problem
number
:
9
Date
solved
:
Sunday, March 30, 2025 at 01:10:55 PM
CAS
classification
:
[[_homogeneous, `class G`], _rational]
ode:=x^4*diff(y(x),x)^2+2*x^3*y(x)*diff(y(x),x)-4 = 0; dsolve(ode,y(x), singsol=all);
ode=x^4*(D[y[x],x])^2+2*x^3*y[x]*D[y[x],x]-4==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x**4*Derivative(y(x), x)**2 + 2*x**3*y(x)*Derivative(y(x), x) - 4,0) ics = {} dsolve(ode,func=y(x),ics=ics)