Internal
problem
ID
[8463]
Book
:
Elementary
differential
equations.
By
Earl
D.
Rainville,
Phillip
E.
Bedient.
Macmilliam
Publishing
Co.
NY.
6th
edition.
1981.
Section
:
CHAPTER
16.
Nonlinear
equations.
Section
99.
Clairaut
equation.
EXERCISES
Page
320
Problem
number
:
3
Date
solved
:
Sunday, March 30, 2025 at 01:08:33 PM
CAS
classification
:
[[_1st_order, _with_linear_symmetries]]
ode:=diff(y(x),x)^2+x^3*diff(y(x),x)-2*x^2*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=(D[y[x],x])^2+x^3*D[y[x],x]-2*x^2*y[x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x**3*Derivative(y(x), x) - 2*x**2*y(x) + Derivative(y(x), x)**2,0) ics = {} dsolve(ode,func=y(x),ics=ics)