Internal
problem
ID
[8432]
Book
:
DIFFERENTIAL
EQUATIONS
with
Boundary
Value
Problems.
DENNIS
G.
ZILL,
WARREN
S.
WRIGHT,
MICHAEL
R.
CULLEN.
Brooks/Cole.
Boston,
MA.
2013.
8th
edition.
Section
:
CHAPTER
8
SYSTEMS
OF
LINEAR
FIRST-ORDER
DIFFERENTIAL
EQUATIONS.
EXERCISES
8.2.
Page
346
Problem
number
:
45
Date
solved
:
Sunday, March 30, 2025 at 01:04:44 PM
CAS
classification
:
system_of_ODEs
With initial conditions
ode:=[diff(x(t),t) = x(t)-12*y(t)-14*z(t), diff(y(t),t) = x(t)+2*y(t)-3*z(t), diff(z(t),t) = x(t)+y(t)-2*z(t)]; ic:=x(0) = 4y(0) = 6z(0) = -7; dsolve([ode,ic]);
ode={D[x[t],t]==x[t]-12*y[t]-14*z[t],D[y[t],t]==x[t]+2*y[t]-3*z[t],D[z[t],t]==x[t]+y[t]-2*z[t]}; ic={x[0]==4,y[0]==6,z[0]==-7}; DSolve[{ode,ic},{x[t],y[t],z[t]},t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") x = Function("x") y = Function("y") z = Function("z") ode=[Eq(-x(t) + 12*y(t) + 14*z(t) + Derivative(x(t), t),0),Eq(-x(t) - 2*y(t) + 3*z(t) + Derivative(y(t), t),0),Eq(-x(t) - y(t) + 2*z(t) + Derivative(z(t), t),0)] ics = {} dsolve(ode,func=[x(t),y(t),z(t)],ics=ics)