Internal
problem
ID
[8422]
Book
:
DIFFERENTIAL
EQUATIONS
with
Boundary
Value
Problems.
DENNIS
G.
ZILL,
WARREN
S.
WRIGHT,
MICHAEL
R.
CULLEN.
Brooks/Cole.
Boston,
MA.
2013.
8th
edition.
Section
:
CHAPTER
8
SYSTEMS
OF
LINEAR
FIRST-ORDER
DIFFERENTIAL
EQUATIONS.
EXERCISES
8.2.
Page
346
Problem
number
:
29
Date
solved
:
Sunday, March 30, 2025 at 01:04:29 PM
CAS
classification
:
system_of_ODEs
With initial conditions
ode:=[diff(x(t),t) = 2*x(t)+4*y(t), diff(y(t),t) = -x(t)+6*y(t)]; ic:=x(0) = -1y(0) = 6; dsolve([ode,ic]);
ode={D[x[t],t]==2*x[t]+4*y[t],D[y[t],t]==-x[t]+6*y[t]}; ic={x[0]==-1,y[0]==6}; DSolve[{ode,ic},{x[t],y[t]},t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") x = Function("x") y = Function("y") ode=[Eq(-2*x(t) - 4*y(t) + Derivative(x(t), t),0),Eq(x(t) - 6*y(t) + Derivative(y(t), t),0)] ics = {} dsolve(ode,func=[x(t),y(t)],ics=ics)