52.9.1 problem 1

Internal problem ID [8379]
Book : DIFFERENTIAL EQUATIONS with Boundary Value Problems. DENNIS G. ZILL, WARREN S. WRIGHT, MICHAEL R. CULLEN. Brooks/Cole. Boston, MA. 2013. 8th edition.
Section : CHAPTER 8 SYSTEMS OF LINEAR FIRST-ORDER DIFFERENTIAL EQUATIONS. EXERCISES 8.1. Page 332
Problem number : 1
Date solved : Sunday, March 30, 2025 at 12:53:25 PM
CAS classification : system_of_ODEs

\begin{align*} \frac {d}{d t}x \left (t \right )&=3 x \left (t \right )-5 y \left (t \right )\\ \frac {d}{d t}y \left (t \right )&=4 x \left (t \right )+8 y \left (t \right ) \end{align*}

Maple. Time used: 0.147 (sec). Leaf size: 83
ode:=[diff(x(t),t) = 3*x(t)-5*y(t), diff(y(t),t) = 4*x(t)+8*y(t)]; 
dsolve(ode);
 
\begin{align*} x \left (t \right ) &= {\mathrm e}^{\frac {11 t}{2}} \left (\sin \left (\frac {\sqrt {55}\, t}{2}\right ) c_1 +\cos \left (\frac {\sqrt {55}\, t}{2}\right ) c_2 \right ) \\ y \left (t \right ) &= \frac {{\mathrm e}^{\frac {11 t}{2}} \left (\sin \left (\frac {\sqrt {55}\, t}{2}\right ) \sqrt {55}\, c_2 -\cos \left (\frac {\sqrt {55}\, t}{2}\right ) \sqrt {55}\, c_1 -5 \sin \left (\frac {\sqrt {55}\, t}{2}\right ) c_1 -5 \cos \left (\frac {\sqrt {55}\, t}{2}\right ) c_2 \right )}{10} \\ \end{align*}
Mathematica. Time used: 0.026 (sec). Leaf size: 113
ode={D[x[t],t]==3*x[t]-5*y[t],D[y[t],t]==4*x[t]+8*y[t]}; 
ic={}; 
DSolve[{ode,ic},{x[t],y[t]},t,IncludeSingularSolutions->True]
 
\begin{align*} x(t)\to \frac {1}{11} e^{11 t/2} \left (11 c_1 \cos \left (\frac {\sqrt {55} t}{2}\right )-\sqrt {55} (c_1+2 c_2) \sin \left (\frac {\sqrt {55} t}{2}\right )\right ) \\ y(t)\to \frac {1}{55} e^{11 t/2} \left (55 c_2 \cos \left (\frac {\sqrt {55} t}{2}\right )+\sqrt {55} (8 c_1+5 c_2) \sin \left (\frac {\sqrt {55} t}{2}\right )\right ) \\ \end{align*}
Sympy. Time used: 0.206 (sec). Leaf size: 104
from sympy import * 
t = symbols("t") 
x = Function("x") 
y = Function("y") 
ode=[Eq(-3*x(t) + 5*y(t) + Derivative(x(t), t),0),Eq(-4*x(t) - 8*y(t) + Derivative(y(t), t),0)] 
ics = {} 
dsolve(ode,func=[x(t),y(t)],ics=ics)
 
\[ \left [ x{\left (t \right )} = - \left (\frac {5 C_{1}}{8} + \frac {\sqrt {55} C_{2}}{8}\right ) e^{\frac {11 t}{2}} \cos {\left (\frac {\sqrt {55} t}{2} \right )} - \left (\frac {\sqrt {55} C_{1}}{8} - \frac {5 C_{2}}{8}\right ) e^{\frac {11 t}{2}} \sin {\left (\frac {\sqrt {55} t}{2} \right )}, \ y{\left (t \right )} = C_{1} e^{\frac {11 t}{2}} \cos {\left (\frac {\sqrt {55} t}{2} \right )} - C_{2} e^{\frac {11 t}{2}} \sin {\left (\frac {\sqrt {55} t}{2} \right )}\right ] \]