52.8.4 problem 4

Internal problem ID [8368]
Book : DIFFERENTIAL EQUATIONS with Boundary Value Problems. DENNIS G. ZILL, WARREN S. WRIGHT, MICHAEL R. CULLEN. Brooks/Cole. Boston, MA. 2013. 8th edition.
Section : CHAPTER 7 THE LAPLACE TRANSFORM. EXERCISES 7.5. Page 315
Problem number : 4
Date solved : Sunday, March 30, 2025 at 12:53:05 PM
CAS classification : [[_2nd_order, _linear, _nonhomogeneous]]

\begin{align*} y^{\prime \prime }+16 y&=\delta \left (t -2 \pi \right ) \end{align*}

Using Laplace method With initial conditions

\begin{align*} y \left (0\right )&=0\\ y^{\prime }\left (0\right )&=0 \end{align*}

Maple. Time used: 0.123 (sec). Leaf size: 16
ode:=diff(diff(y(t),t),t)+16*y(t) = Dirac(t-2*Pi); 
ic:=y(0) = 0, D(y)(0) = 0; 
dsolve([ode,ic],y(t),method='laplace');
 
\[ y = \frac {\operatorname {Heaviside}\left (t -2 \pi \right ) \sin \left (4 t \right )}{4} \]
Mathematica. Time used: 0.021 (sec). Leaf size: 19
ode=D[y[t],{t,2}]+16*y[t]==DiracDelta[t-2*Pi]; 
ic={y[0]==0,Derivative[1][y][0] ==0}; 
DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
 
\[ y(t)\to \frac {1}{4} \theta (t-2 \pi ) \sin (4 t) \]
Sympy. Time used: 1.048 (sec). Leaf size: 73
from sympy import * 
t = symbols("t") 
y = Function("y") 
ode = Eq(-Dirac(t - 2*pi) + 16*y(t) + Derivative(y(t), (t, 2)),0) 
ics = {y(0): 0, Subs(Derivative(y(t), t), t, 0): 0} 
dsolve(ode,func=y(t),ics=ics)
 
\[ y{\left (t \right )} = \left (- \frac {\int \operatorname {Dirac}{\left (t - 2 \pi \right )} \sin {\left (4 t \right )}\, dt}{4} + \frac {\int \limits ^{0} \operatorname {Dirac}{\left (t - 2 \pi \right )} \sin {\left (4 t \right )}\, dt}{4}\right ) \cos {\left (4 t \right )} + \left (\frac {\int \operatorname {Dirac}{\left (t - 2 \pi \right )} \cos {\left (4 t \right )}\, dt}{4} - \frac {\int \limits ^{0} \operatorname {Dirac}{\left (t - 2 \pi \right )} \cos {\left (4 t \right )}\, dt}{4}\right ) \sin {\left (4 t \right )} \]