Internal
problem
ID
[8347]
Book
:
DIFFERENTIAL
EQUATIONS
with
Boundary
Value
Problems.
DENNIS
G.
ZILL,
WARREN
S.
WRIGHT,
MICHAEL
R.
CULLEN.
Brooks/Cole.
Boston,
MA.
2013.
8th
edition.
Section
:
CHAPTER
7
THE
LAPLACE
TRANSFORM.
7.3.1
TRANSLATION
ON
THE
s-AXIS.
Page
297
Problem
number
:
32
Date
solved
:
Sunday, March 30, 2025 at 12:52:32 PM
CAS
classification
:
[[_2nd_order, _missing_x]]
Using Laplace method With initial conditions
ode:=diff(diff(y(t),t),t)+8*diff(y(t),t)+20*y(t) = 0; ic:=y(0) = 0, D(y)(Pi) = 0; dsolve([ode,ic],y(t),method='laplace');
ode=D[y[t],{t,2}]+8*D[y[t],t]+20*y[t]==0; ic={y[0]==0,Derivative[1][y][Pi]==0}; DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") y = Function("y") ode = Eq(20*y(t) + 8*Derivative(y(t), t) + Derivative(y(t), (t, 2)),0) ics = {y(0): 0, Subs(Derivative(y(t), t), t, pi): 0} dsolve(ode,func=y(t),ics=ics)